涉及梯度丰富连续体混合物问题的先验误差分析

IF 1.3 4区 数学 Q1 MATHEMATICS
Noelia Bazarra,José R. Fernández,Antonio Magaña,Marc Magaña, Ramόn Quintanilla
{"title":"涉及梯度丰富连续体混合物问题的先验误差分析","authors":"Noelia Bazarra,José R. Fernández,Antonio Magaña,Marc Magaña, Ramόn Quintanilla","doi":"10.4208/ijnam2024-1006","DOIUrl":null,"url":null,"abstract":"In this work, we study a strain gradient problem involving mixtures. The variational\nformulation is written as a first-order in time coupled system of parabolic variational equations.\nAn existence and uniqueness result is recalled. Then, we introduce a fully discrete approximation\nby using the finite element method and the implicit Euler scheme. A discrete stability property and\na priori error estimates are proved. Finally, some one- and two-dimensional numerical simulations\nare performed.","PeriodicalId":50301,"journal":{"name":"International Journal of Numerical Analysis and Modeling","volume":"13 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An a Priori Error Analysis of a Problem Involving Mixtures of Continua with Gradient Enrichment\",\"authors\":\"Noelia Bazarra,José R. Fernández,Antonio Magaña,Marc Magaña, Ramόn Quintanilla\",\"doi\":\"10.4208/ijnam2024-1006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study a strain gradient problem involving mixtures. The variational\\nformulation is written as a first-order in time coupled system of parabolic variational equations.\\nAn existence and uniqueness result is recalled. Then, we introduce a fully discrete approximation\\nby using the finite element method and the implicit Euler scheme. A discrete stability property and\\na priori error estimates are proved. Finally, some one- and two-dimensional numerical simulations\\nare performed.\",\"PeriodicalId\":50301,\"journal\":{\"name\":\"International Journal of Numerical Analysis and Modeling\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Analysis and Modeling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/ijnam2024-1006\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Analysis and Modeling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/ijnam2024-1006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了一个涉及混合物的应变梯度问题。变分公式被写成抛物线变分方程的一阶时间耦合系统。然后,我们利用有限元法和隐式欧拉方案引入了完全离散的近似方法。证明了离散稳定性和先验误差估计。最后,进行了一些一维和二维数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An a Priori Error Analysis of a Problem Involving Mixtures of Continua with Gradient Enrichment
In this work, we study a strain gradient problem involving mixtures. The variational formulation is written as a first-order in time coupled system of parabolic variational equations. An existence and uniqueness result is recalled. Then, we introduce a fully discrete approximation by using the finite element method and the implicit Euler scheme. A discrete stability property and a priori error estimates are proved. Finally, some one- and two-dimensional numerical simulations are performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
9.10%
发文量
1
审稿时长
6-12 weeks
期刊介绍: The journal is directed to the broad spectrum of researchers in numerical methods throughout science and engineering, and publishes high quality original papers in all fields of numerical analysis and mathematical modeling including: numerical differential equations, scientific computing, linear algebra, control, optimization, and related areas of engineering and scientific applications. The journal welcomes the contribution of original developments of numerical methods, mathematical analysis leading to better understanding of the existing algorithms, and applications of numerical techniques to real engineering and scientific problems. Rigorous studies of the convergence of algorithms, their accuracy and stability, and their computational complexity are appropriate for this journal. Papers addressing new numerical algorithms and techniques, demonstrating the potential of some novel ideas, describing experiments involving new models and simulations for practical problems are also suitable topics for the journal. The journal welcomes survey articles which summarize state of art knowledge and present open problems of particular numerical techniques and mathematical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信