非阿贝尔杨-米尔斯理论的量子化

IF 1.5 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Walaa I. Eshraim
{"title":"非阿贝尔杨-米尔斯理论的量子化","authors":"Walaa I. Eshraim","doi":"10.1142/s0217732324500366","DOIUrl":null,"url":null,"abstract":"<p>A non-Abelian theory of fermions interacting with gauge bosons, the constrained system, is studied. The equations of motion for a singular system are obtained as total differential equations in many variables. The integrability conditions are investigated, and the set of equations of motion is integrable. The Senjanovic and the canonical methods are used to quantize the system, and the integration is taken over the canonical phase space coordinates.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"94 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantization of non-Abelian Yang-Mills theories\",\"authors\":\"Walaa I. Eshraim\",\"doi\":\"10.1142/s0217732324500366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A non-Abelian theory of fermions interacting with gauge bosons, the constrained system, is studied. The equations of motion for a singular system are obtained as total differential equations in many variables. The integrability conditions are investigated, and the set of equations of motion is integrable. The Senjanovic and the canonical methods are used to quantize the system, and the integration is taken over the canonical phase space coordinates.</p>\",\"PeriodicalId\":18752,\"journal\":{\"name\":\"Modern Physics Letters A\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217732324500366\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217732324500366","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了费米子与规玻色子相互作用的非阿贝尔理论--约束系统。奇异系统的运动方程以多变量全微分方程的形式得到。研究了可积分性条件,发现运动方程组是可积分的。利用森扬诺维奇和卡农方法对系统进行量化,并在卡农相空间坐标上进行积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantization of non-Abelian Yang-Mills theories

A non-Abelian theory of fermions interacting with gauge bosons, the constrained system, is studied. The equations of motion for a singular system are obtained as total differential equations in many variables. The integrability conditions are investigated, and the set of equations of motion is integrable. The Senjanovic and the canonical methods are used to quantize the system, and the integration is taken over the canonical phase space coordinates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Physics Letters A
Modern Physics Letters A 物理-物理:核物理
CiteScore
3.10
自引率
7.10%
发文量
186
审稿时长
3 months
期刊介绍: This letters journal, launched in 1986, consists of research papers covering current research developments in Gravitation, Cosmology, Astrophysics, Nuclear Physics, Particles and Fields, Accelerator physics, and Quantum Information. A Brief Review section has also been initiated with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信