{"title":"关于一般配置的代谢能力估计的说明","authors":"Benny Avelin, Vesa Julin","doi":"10.1007/s00229-024-01555-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper we further develop the ideas from Geometric Function Theory initially introduced in Avelin et al. (Commun Math Phys 404:401–437, 2023), to derive capacity estimate in metastability for arbitrary configurations. The novelty of this paper is twofold. First, the graph theoretical connection enables us to exactly compute the pre-factor in the capacity. Second, we complete the method from Avelin et al. (Commun Math Phys 404:401–437, 2023) by providing an upper bound using Geometric Function Theory together with Thompson’s principle, avoiding explicit constructions of test functions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on the capacity estimate in metastability for generic configurations\",\"authors\":\"Benny Avelin, Vesa Julin\",\"doi\":\"10.1007/s00229-024-01555-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we further develop the ideas from Geometric Function Theory initially introduced in Avelin et al. (Commun Math Phys 404:401–437, 2023), to derive capacity estimate in metastability for arbitrary configurations. The novelty of this paper is twofold. First, the graph theoretical connection enables us to exactly compute the pre-factor in the capacity. Second, we complete the method from Avelin et al. (Commun Math Phys 404:401–437, 2023) by providing an upper bound using Geometric Function Theory together with Thompson’s principle, avoiding explicit constructions of test functions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01555-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01555-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们进一步发展了最初在阿维林等人(Commun Math Phys 404:401-437, 2023)一文中提出的几何函数论的思想,推导出了任意配置的可转移性容量估计。本文的新颖之处有两方面。首先,图论联系使我们能够精确计算容量中的预因子。其次,我们利用几何函数理论和汤普森原理提供了一个上界,避免了测试函数的明确构造,从而完善了阿维林等人(Commun Math Phys 404:401-437, 2023)的方法。
A note on the capacity estimate in metastability for generic configurations
In this paper we further develop the ideas from Geometric Function Theory initially introduced in Avelin et al. (Commun Math Phys 404:401–437, 2023), to derive capacity estimate in metastability for arbitrary configurations. The novelty of this paper is twofold. First, the graph theoretical connection enables us to exactly compute the pre-factor in the capacity. Second, we complete the method from Avelin et al. (Commun Math Phys 404:401–437, 2023) by providing an upper bound using Geometric Function Theory together with Thompson’s principle, avoiding explicit constructions of test functions.