PCF 二次非多项式映射的迭代单色群

IF 0.5 4区 数学 Q3 MATHEMATICS
Özlem Ejder, Yasemin Kara, Ekin Ozman
{"title":"PCF 二次非多项式映射的迭代单色群","authors":"Özlem Ejder, Yasemin Kara, Ekin Ozman","doi":"10.1007/s00229-024-01549-z","DOIUrl":null,"url":null,"abstract":"<p>We study the postcritically finite non-polynomial map <span>\\(f(x)=\\frac{1}{(x-1)^2}\\)</span> over a number field <i>k</i> and prove various results about the geometric <span>\\(G^{\\textrm{geom}}(f)\\)</span> and arithmetic <span>\\(G^{\\textrm{arith}}(f)\\)</span> iterated monodromy groups of <i>f</i>. We show that the elements of <span>\\(G^{\\textrm{geom}}(f)\\)</span> are the ones in <span>\\(G^{\\textrm{arith}}(f)\\)</span> that fix certain roots of unity by assuming a conjecture on the size of <span>\\(G^{\\textrm{geom}}_n(f)\\)</span>. Furthermore, we describe exactly for which <span>\\(a \\in k\\)</span> the Arboreal Galois group <span>\\(G_a(f)\\)</span> and <span>\\(G^{\\textrm{arith}}(f)\\)</span> are equal.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"130 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterated monodromy group of a PCF quadratic non-polynomial map\",\"authors\":\"Özlem Ejder, Yasemin Kara, Ekin Ozman\",\"doi\":\"10.1007/s00229-024-01549-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the postcritically finite non-polynomial map <span>\\\\(f(x)=\\\\frac{1}{(x-1)^2}\\\\)</span> over a number field <i>k</i> and prove various results about the geometric <span>\\\\(G^{\\\\textrm{geom}}(f)\\\\)</span> and arithmetic <span>\\\\(G^{\\\\textrm{arith}}(f)\\\\)</span> iterated monodromy groups of <i>f</i>. We show that the elements of <span>\\\\(G^{\\\\textrm{geom}}(f)\\\\)</span> are the ones in <span>\\\\(G^{\\\\textrm{arith}}(f)\\\\)</span> that fix certain roots of unity by assuming a conjecture on the size of <span>\\\\(G^{\\\\textrm{geom}}_n(f)\\\\)</span>. Furthermore, we describe exactly for which <span>\\\\(a \\\\in k\\\\)</span> the Arboreal Galois group <span>\\\\(G_a(f)\\\\)</span> and <span>\\\\(G^{\\\\textrm{arith}}(f)\\\\)</span> are equal.</p>\",\"PeriodicalId\":49887,\"journal\":{\"name\":\"Manuscripta Mathematica\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manuscripta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01549-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01549-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了数域 k 上的后限定非多项式映射(f(x)=\frac{1}{(x-1)^2}\),并证明了关于 f 的几何 \(G^{textrm{geom}}(f)\) 和算术 \(G^{textrm{arith}}(f)\) 迭代单色群的各种结果。我们通过假设对 \(G^{\textrm{geom}}(f)\ 的大小的猜想,证明 \(G^{textrm{geom}}(f)\) 的元素是 \(G^{textrm{arith}}(f)\) 中固定某些合一根的元素。)此外,我们还精确地描述了在哪些情况下,Arboreal 伽罗瓦群 \(G_a(f)\)和 \(G^{text/strm{arith}}(f)\)是相等的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterated monodromy group of a PCF quadratic non-polynomial map

We study the postcritically finite non-polynomial map \(f(x)=\frac{1}{(x-1)^2}\) over a number field k and prove various results about the geometric \(G^{\textrm{geom}}(f)\) and arithmetic \(G^{\textrm{arith}}(f)\) iterated monodromy groups of f. We show that the elements of \(G^{\textrm{geom}}(f)\) are the ones in \(G^{\textrm{arith}}(f)\) that fix certain roots of unity by assuming a conjecture on the size of \(G^{\textrm{geom}}_n(f)\). Furthermore, we describe exactly for which \(a \in k\) the Arboreal Galois group \(G_a(f)\) and \(G^{\textrm{arith}}(f)\) are equal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manuscripta Mathematica
Manuscripta Mathematica 数学-数学
CiteScore
1.40
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信