{"title":"PCF 二次非多项式映射的迭代单色群","authors":"Özlem Ejder, Yasemin Kara, Ekin Ozman","doi":"10.1007/s00229-024-01549-z","DOIUrl":null,"url":null,"abstract":"<p>We study the postcritically finite non-polynomial map <span>\\(f(x)=\\frac{1}{(x-1)^2}\\)</span> over a number field <i>k</i> and prove various results about the geometric <span>\\(G^{\\textrm{geom}}(f)\\)</span> and arithmetic <span>\\(G^{\\textrm{arith}}(f)\\)</span> iterated monodromy groups of <i>f</i>. We show that the elements of <span>\\(G^{\\textrm{geom}}(f)\\)</span> are the ones in <span>\\(G^{\\textrm{arith}}(f)\\)</span> that fix certain roots of unity by assuming a conjecture on the size of <span>\\(G^{\\textrm{geom}}_n(f)\\)</span>. Furthermore, we describe exactly for which <span>\\(a \\in k\\)</span> the Arboreal Galois group <span>\\(G_a(f)\\)</span> and <span>\\(G^{\\textrm{arith}}(f)\\)</span> are equal.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterated monodromy group of a PCF quadratic non-polynomial map\",\"authors\":\"Özlem Ejder, Yasemin Kara, Ekin Ozman\",\"doi\":\"10.1007/s00229-024-01549-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the postcritically finite non-polynomial map <span>\\\\(f(x)=\\\\frac{1}{(x-1)^2}\\\\)</span> over a number field <i>k</i> and prove various results about the geometric <span>\\\\(G^{\\\\textrm{geom}}(f)\\\\)</span> and arithmetic <span>\\\\(G^{\\\\textrm{arith}}(f)\\\\)</span> iterated monodromy groups of <i>f</i>. We show that the elements of <span>\\\\(G^{\\\\textrm{geom}}(f)\\\\)</span> are the ones in <span>\\\\(G^{\\\\textrm{arith}}(f)\\\\)</span> that fix certain roots of unity by assuming a conjecture on the size of <span>\\\\(G^{\\\\textrm{geom}}_n(f)\\\\)</span>. Furthermore, we describe exactly for which <span>\\\\(a \\\\in k\\\\)</span> the Arboreal Galois group <span>\\\\(G_a(f)\\\\)</span> and <span>\\\\(G^{\\\\textrm{arith}}(f)\\\\)</span> are equal.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01549-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01549-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了数域 k 上的后限定非多项式映射(f(x)=\frac{1}{(x-1)^2}\),并证明了关于 f 的几何 \(G^{textrm{geom}}(f)\) 和算术 \(G^{textrm{arith}}(f)\) 迭代单色群的各种结果。我们通过假设对 \(G^{\textrm{geom}}(f)\ 的大小的猜想,证明 \(G^{textrm{geom}}(f)\) 的元素是 \(G^{textrm{arith}}(f)\) 中固定某些合一根的元素。)此外,我们还精确地描述了在哪些情况下,Arboreal 伽罗瓦群 \(G_a(f)\)和 \(G^{text/strm{arith}}(f)\)是相等的。
Iterated monodromy group of a PCF quadratic non-polynomial map
We study the postcritically finite non-polynomial map \(f(x)=\frac{1}{(x-1)^2}\) over a number field k and prove various results about the geometric \(G^{\textrm{geom}}(f)\) and arithmetic \(G^{\textrm{arith}}(f)\) iterated monodromy groups of f. We show that the elements of \(G^{\textrm{geom}}(f)\) are the ones in \(G^{\textrm{arith}}(f)\) that fix certain roots of unity by assuming a conjecture on the size of \(G^{\textrm{geom}}_n(f)\). Furthermore, we describe exactly for which \(a \in k\) the Arboreal Galois group \(G_a(f)\) and \(G^{\textrm{arith}}(f)\) are equal.