{"title":"具有恒定莫比乌斯曲率和平坦法线束的子曲率","authors":"M. S. R. Antas, R. Tojeiro","doi":"10.1007/s00229-024-01536-4","DOIUrl":null,"url":null,"abstract":"<p>We classify isometric immersions <span>\\(f:M^{n}\\rightarrow \\mathbb {R}^{n+p}\\)</span>, <span>\\(n \\ge 5\\)</span> and <span>\\(2p \\le n\\)</span>, with constant Moebius curvature and flat normal bundle.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Submanifolds with constant Moebius curvature and flat normal bundle\",\"authors\":\"M. S. R. Antas, R. Tojeiro\",\"doi\":\"10.1007/s00229-024-01536-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We classify isometric immersions <span>\\\\(f:M^{n}\\\\rightarrow \\\\mathbb {R}^{n+p}\\\\)</span>, <span>\\\\(n \\\\ge 5\\\\)</span> and <span>\\\\(2p \\\\le n\\\\)</span>, with constant Moebius curvature and flat normal bundle.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01536-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01536-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Submanifolds with constant Moebius curvature and flat normal bundle
We classify isometric immersions \(f:M^{n}\rightarrow \mathbb {R}^{n+p}\), \(n \ge 5\) and \(2p \le n\), with constant Moebius curvature and flat normal bundle.