非均质自旋 q-Whittaker 多项式的表示论解释和插值特性

{"title":"非均质自旋 q-Whittaker 多项式的表示论解释和插值特性","authors":"","doi":"10.1007/s00029-024-00930-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We establish new properties of inhomogeneous spin <em>q</em>-Whittaker polynomials, which are symmetric polynomials generalizing <span> <span>\\(t=0\\)</span> </span> Macdonald polynomials. We show that these polynomials are defined in terms of a vertex model, whose weights come not from an <em>R</em>-matrix, as is often the case, but from other intertwining operators of <span> <span>\\(U'_q({\\widehat{\\mathfrak {sl}}}_2)\\)</span> </span>-modules. Using this construction, we are able to prove a Cauchy-type identity for inhomogeneous spin <em>q</em>-Whittaker polynomials in full generality. Moreover, we are able to characterize spin <em>q</em>-Whittaker polynomials in terms of vanishing at certain points, and we find interpolation analogues of <em>q</em>-Whittaker and elementary symmetric polynomials. </p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representation theoretic interpretation and interpolation properties of inhomogeneous spin q-Whittaker polynomials\",\"authors\":\"\",\"doi\":\"10.1007/s00029-024-00930-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We establish new properties of inhomogeneous spin <em>q</em>-Whittaker polynomials, which are symmetric polynomials generalizing <span> <span>\\\\(t=0\\\\)</span> </span> Macdonald polynomials. We show that these polynomials are defined in terms of a vertex model, whose weights come not from an <em>R</em>-matrix, as is often the case, but from other intertwining operators of <span> <span>\\\\(U'_q({\\\\widehat{\\\\mathfrak {sl}}}_2)\\\\)</span> </span>-modules. Using this construction, we are able to prove a Cauchy-type identity for inhomogeneous spin <em>q</em>-Whittaker polynomials in full generality. Moreover, we are able to characterize spin <em>q</em>-Whittaker polynomials in terms of vanishing at certain points, and we find interpolation analogues of <em>q</em>-Whittaker and elementary symmetric polynomials. </p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00930-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00930-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们建立了非均质自旋 q-Whittaker 多项式的新性质,它们是对称多项式对 \(t=0\) Macdonald 多项式的概括。我们证明这些多项式是根据顶点模型定义的,其权重不是像通常那样来自 R 矩阵,而是来自 \(U'_q({\widehat{\mathfrak {sl}}_2)\) 的其他交织算子。)-模块。利用这种构造,我们能够证明非均质自旋 q-Whittaker 多项式的一个完全通用的 Cauchy-type 特性。此外,我们还能用在某些点上的消失来描述自旋 q-Whittaker 多项式的特征,并找到 q-Whittaker 多项式和基本对称多项式的插值类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation theoretic interpretation and interpolation properties of inhomogeneous spin q-Whittaker polynomials

Abstract

We establish new properties of inhomogeneous spin q-Whittaker polynomials, which are symmetric polynomials generalizing \(t=0\) Macdonald polynomials. We show that these polynomials are defined in terms of a vertex model, whose weights come not from an R-matrix, as is often the case, but from other intertwining operators of \(U'_q({\widehat{\mathfrak {sl}}}_2)\) -modules. Using this construction, we are able to prove a Cauchy-type identity for inhomogeneous spin q-Whittaker polynomials in full generality. Moreover, we are able to characterize spin q-Whittaker polynomials in terms of vanishing at certain points, and we find interpolation analogues of q-Whittaker and elementary symmetric polynomials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信