通过 $$m=1$$ 放大系数从超几何到有边弗洛尔同调

{"title":"通过 $$m=1$$ 放大系数从超几何到有边弗洛尔同调","authors":"","doi":"10.1007/s00029-024-00932-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We relate the Fukaya category of the symmetric power of a genus zero surface to deformed category <span> <span>\\(\\mathcal {O}\\)</span> </span> of a cyclic hypertoric variety by establishing an isomorphism between algebras defined by Ozsváth–Szabó in Heegaard–Floer theory and Braden–Licata–Proudfoot–Webster in hypertoric geometry. The proof extends work of Karp–Williams on sign variation and the combinatorics of the <span> <span>\\(m=1\\)</span> </span> amplituhedron. We then use the algebras associated to cyclic arrangements to construct categorical actions of <span> <span>\\(\\mathfrak {gl}(1|1)\\)</span> </span>, and generalize our isomorphism to give a conjectural algebraic description of the Fukaya category of a complexified hyperplane complement. </p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From hypertoric geometry to bordered Floer homology via the $$m=1$$ amplituhedron\",\"authors\":\"\",\"doi\":\"10.1007/s00029-024-00932-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We relate the Fukaya category of the symmetric power of a genus zero surface to deformed category <span> <span>\\\\(\\\\mathcal {O}\\\\)</span> </span> of a cyclic hypertoric variety by establishing an isomorphism between algebras defined by Ozsváth–Szabó in Heegaard–Floer theory and Braden–Licata–Proudfoot–Webster in hypertoric geometry. The proof extends work of Karp–Williams on sign variation and the combinatorics of the <span> <span>\\\\(m=1\\\\)</span> </span> amplituhedron. We then use the algebras associated to cyclic arrangements to construct categorical actions of <span> <span>\\\\(\\\\mathfrak {gl}(1|1)\\\\)</span> </span>, and generalize our isomorphism to give a conjectural algebraic description of the Fukaya category of a complexified hyperplane complement. </p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00932-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00932-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们通过建立由 Ozsváth-Szabó 在 Heegaard-Floer 理论中定义的代数与 Braden-Licata-Proudfoot-Webster 在超几何中定义的代数之间的同构关系,将零属曲面的对称幂的 Fukaya 范畴与循环超几何的变形范畴 \(\mathcal {O}\) 联系起来。证明扩展了卡普-威廉姆斯(Karp-Williams)关于符号变化和 \(m=1\) 振子面体组合学的工作。然后,我们使用与循环排列相关的代数来构造 \(\mathfrak {gl}(1|1)\) 的分类行动,并将我们的同构性加以推广。,并将我们的同构概括为对复化超平面补集的 Fukaya 范畴的猜想代数描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From hypertoric geometry to bordered Floer homology via the $$m=1$$ amplituhedron

Abstract

We relate the Fukaya category of the symmetric power of a genus zero surface to deformed category \(\mathcal {O}\) of a cyclic hypertoric variety by establishing an isomorphism between algebras defined by Ozsváth–Szabó in Heegaard–Floer theory and Braden–Licata–Proudfoot–Webster in hypertoric geometry. The proof extends work of Karp–Williams on sign variation and the combinatorics of the \(m=1\) amplituhedron. We then use the algebras associated to cyclic arrangements to construct categorical actions of \(\mathfrak {gl}(1|1)\) , and generalize our isomorphism to give a conjectural algebraic description of the Fukaya category of a complexified hyperplane complement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信