李群和对数联系

Francis Bischoff
{"title":"李群和对数联系","authors":"Francis Bischoff","doi":"10.1007/s00029-024-00929-3","DOIUrl":null,"url":null,"abstract":"<p>Using tools from the theory of Lie groupoids, we study the category of logarithmic flat connections on principal <i>G</i>-bundles, where <i>G</i> is a complex reductive structure group. Flat connections on the affine line with a logarithmic singularity at the origin are equivalent to representations of a groupoid associated to the exponentiated action of <span>\\(\\mathbb {C}\\)</span>. We show that such representations admit a canonical Jordan–Chevalley decomposition and may be linearized by converting the <span>\\({\\mathbb {C}}\\)</span>-action to a <span>\\({\\mathbb {C}}^{*}\\)</span>-action. We then apply these results to give a functorial classification. Flat connections on a complex manifold with logarithmic singularities along a hypersurface are equivalent to representations of a twisted fundamental groupoid. Using a Morita equivalence, whose construction is inspired by Deligne’s notion of paths with tangential basepoints, we prove a van Kampen type theorem for this groupoid. This allows us to show that the category of representations of the twisted fundamental groupoid can be localized to the normal bundle of the hypersurface. As a result, we obtain a functorial Riemann–Hilbert correspondence for logarithmic connections in terms of generalized monodromy data.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lie groupoids and logarithmic connections\",\"authors\":\"Francis Bischoff\",\"doi\":\"10.1007/s00029-024-00929-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using tools from the theory of Lie groupoids, we study the category of logarithmic flat connections on principal <i>G</i>-bundles, where <i>G</i> is a complex reductive structure group. Flat connections on the affine line with a logarithmic singularity at the origin are equivalent to representations of a groupoid associated to the exponentiated action of <span>\\\\(\\\\mathbb {C}\\\\)</span>. We show that such representations admit a canonical Jordan–Chevalley decomposition and may be linearized by converting the <span>\\\\({\\\\mathbb {C}}\\\\)</span>-action to a <span>\\\\({\\\\mathbb {C}}^{*}\\\\)</span>-action. We then apply these results to give a functorial classification. Flat connections on a complex manifold with logarithmic singularities along a hypersurface are equivalent to representations of a twisted fundamental groupoid. Using a Morita equivalence, whose construction is inspired by Deligne’s notion of paths with tangential basepoints, we prove a van Kampen type theorem for this groupoid. This allows us to show that the category of representations of the twisted fundamental groupoid can be localized to the normal bundle of the hypersurface. As a result, we obtain a functorial Riemann–Hilbert correspondence for logarithmic connections in terms of generalized monodromy data.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00929-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00929-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用李群理论的工具,我们研究了主 G 束上的对数平面连接类别,其中 G 是一个复还原结构群。在原点处具有对数奇点的仿射线上的平连接等价于与\(\mathbb {C}\) 的指数化作用相关联的类群的表示。我们证明了这些表示允许一个典型的乔丹-切瓦利分解,并且可以通过把 \({\mathbb {C}\) 作用转换为 \({\mathbb {C}^{*}\) 作用来线性化。然后,我们将应用这些结果给出一个扇形分类。复流形上沿着超曲面具有对数奇点的平连接等价于扭曲基群的表示。利用莫里塔等价关系(其构造受到德利涅的切向基点路径概念的启发),我们证明了这个基群的范坎彭类型定理。这使我们能够证明,扭曲基群的表示范畴可以局部化为超曲面的法线束。因此,我们从广义单色性数据的角度获得了对数连接的黎曼-希尔伯特函数对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lie groupoids and logarithmic connections

Using tools from the theory of Lie groupoids, we study the category of logarithmic flat connections on principal G-bundles, where G is a complex reductive structure group. Flat connections on the affine line with a logarithmic singularity at the origin are equivalent to representations of a groupoid associated to the exponentiated action of \(\mathbb {C}\). We show that such representations admit a canonical Jordan–Chevalley decomposition and may be linearized by converting the \({\mathbb {C}}\)-action to a \({\mathbb {C}}^{*}\)-action. We then apply these results to give a functorial classification. Flat connections on a complex manifold with logarithmic singularities along a hypersurface are equivalent to representations of a twisted fundamental groupoid. Using a Morita equivalence, whose construction is inspired by Deligne’s notion of paths with tangential basepoints, we prove a van Kampen type theorem for this groupoid. This allows us to show that the category of representations of the twisted fundamental groupoid can be localized to the normal bundle of the hypersurface. As a result, we obtain a functorial Riemann–Hilbert correspondence for logarithmic connections in terms of generalized monodromy data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信