{"title":"用于自动识别细混凝土裂缝宽度的三阶段检测算法","authors":"Huang Huang, Zhishen Wu, Haifeng Shen","doi":"10.1007/s13349-024-00797-7","DOIUrl":null,"url":null,"abstract":"<p>Semantic image segmentation is extensively used for automatic concrete crack detection. In previous studies on semantic image segmentation, concrete images were usually labeled as crack and noncrack zones, and recognition models were then trained using artificial neural networks. However, there is not enough edge information in concrete images for the trained model to identify effectively fine concrete cracks (widths < 0.1 mm). Furthermore, complex backgrounds in concrete images can cause false detections. To improve efficiency and reduce false detections, this study develops a three-stage automatic crack-width identification method for fine concrete cracks. First, a full crack skeleton information identification based on image segmentation is proposed. The performance of the mainstream image segmentation architectures, PSP-Net, Seg-Net, U-Net, and Res-Unet, are compared and analyzed, demonstrating that the Res-Unet-based crack skeleton segmentation is the most accurate at fine-crack detection and able to solve the information loss problem that occurs when learning the imbalanced data of fine concrete cracks. Second, a fractal dimension (FD)-based false detection removal process is applied to discriminate true cracks and false detections. The results show that false detections (line-like curves, shadows, and surface stains) can be removed, increasing the matching rate from 0.6476 to 0.8351. Finally, the FD features of the crack skeleton with maximum widths < 0.1 mm, crack widths in the range of 0.1–0.2 mm, and crack widths > 0.2 mm are calculated. Findings illustrate that the values of the FD feature for the three crack-width ranges are suitable for quantitative characterization of identified crack widths.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":"21 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A three-stage detection algorithm for automatic crack-width identification of fine concrete cracks\",\"authors\":\"Huang Huang, Zhishen Wu, Haifeng Shen\",\"doi\":\"10.1007/s13349-024-00797-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Semantic image segmentation is extensively used for automatic concrete crack detection. In previous studies on semantic image segmentation, concrete images were usually labeled as crack and noncrack zones, and recognition models were then trained using artificial neural networks. However, there is not enough edge information in concrete images for the trained model to identify effectively fine concrete cracks (widths < 0.1 mm). Furthermore, complex backgrounds in concrete images can cause false detections. To improve efficiency and reduce false detections, this study develops a three-stage automatic crack-width identification method for fine concrete cracks. First, a full crack skeleton information identification based on image segmentation is proposed. The performance of the mainstream image segmentation architectures, PSP-Net, Seg-Net, U-Net, and Res-Unet, are compared and analyzed, demonstrating that the Res-Unet-based crack skeleton segmentation is the most accurate at fine-crack detection and able to solve the information loss problem that occurs when learning the imbalanced data of fine concrete cracks. Second, a fractal dimension (FD)-based false detection removal process is applied to discriminate true cracks and false detections. The results show that false detections (line-like curves, shadows, and surface stains) can be removed, increasing the matching rate from 0.6476 to 0.8351. Finally, the FD features of the crack skeleton with maximum widths < 0.1 mm, crack widths in the range of 0.1–0.2 mm, and crack widths > 0.2 mm are calculated. Findings illustrate that the values of the FD feature for the three crack-width ranges are suitable for quantitative characterization of identified crack widths.</p>\",\"PeriodicalId\":48582,\"journal\":{\"name\":\"Journal of Civil Structural Health Monitoring\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Civil Structural Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13349-024-00797-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Structural Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13349-024-00797-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A three-stage detection algorithm for automatic crack-width identification of fine concrete cracks
Semantic image segmentation is extensively used for automatic concrete crack detection. In previous studies on semantic image segmentation, concrete images were usually labeled as crack and noncrack zones, and recognition models were then trained using artificial neural networks. However, there is not enough edge information in concrete images for the trained model to identify effectively fine concrete cracks (widths < 0.1 mm). Furthermore, complex backgrounds in concrete images can cause false detections. To improve efficiency and reduce false detections, this study develops a three-stage automatic crack-width identification method for fine concrete cracks. First, a full crack skeleton information identification based on image segmentation is proposed. The performance of the mainstream image segmentation architectures, PSP-Net, Seg-Net, U-Net, and Res-Unet, are compared and analyzed, demonstrating that the Res-Unet-based crack skeleton segmentation is the most accurate at fine-crack detection and able to solve the information loss problem that occurs when learning the imbalanced data of fine concrete cracks. Second, a fractal dimension (FD)-based false detection removal process is applied to discriminate true cracks and false detections. The results show that false detections (line-like curves, shadows, and surface stains) can be removed, increasing the matching rate from 0.6476 to 0.8351. Finally, the FD features of the crack skeleton with maximum widths < 0.1 mm, crack widths in the range of 0.1–0.2 mm, and crack widths > 0.2 mm are calculated. Findings illustrate that the values of the FD feature for the three crack-width ranges are suitable for quantitative characterization of identified crack widths.
期刊介绍:
The Journal of Civil Structural Health Monitoring (JCSHM) publishes articles to advance the understanding and the application of health monitoring methods for the condition assessment and management of civil infrastructure systems.
JCSHM serves as a focal point for sharing knowledge and experience in technologies impacting the discipline of Civionics and Civil Structural Health Monitoring, especially in terms of load capacity ratings and service life estimation.