{"title":"用于估算带有奇异夸克的中间夸克凝聚态的 K + N 弹性散射","authors":"Yutaro Iizawa, Daisuke Jido, Stephan Hübsch","doi":"10.1093/ptep/ptae050","DOIUrl":null,"url":null,"abstract":"We revisit the low-energy K+N elastic scatterings in the context of the in-medium quark condensate with strange quarks. The chiral ward identity connects the in-medium quark condensate to the soft limit value of the pseudoscalar correlation function evaluated in nuclear matter. The in-medium correlation function of the psuedoscalar fields with strangeness describes in-medium kaon propagation and is obtained by kaon-nucleon scattering amplitudes in the low density approximation. We construct the kaon-nucleon scattering amplitudes in chiral perturbation theory up to the next-to-leading order and add some terms of the next-to-next-to-leading order with the strange quark mass to improve expansion of the strange quark sector. We also consider the effect of a possible broad resonance state around Plab = 600 MeV/c for I = 0 reported in the previous study. The low energy constants are determined by existent K+N scattering data. We obtain good reproduction of the K+p scattering amplitude by chiral perturbation theory, while the description of the KN amplitude with I = 0 is not so satisfactory due to the lack of low energy data. Performing analytic continuation of the scattering amplitudes obtained by chiral perturbation theory to the soft limit, we estimate the in-medium strange quark condensate.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K + N elastic scatterings for estimation of in-medium quark condensate with strange quarks\",\"authors\":\"Yutaro Iizawa, Daisuke Jido, Stephan Hübsch\",\"doi\":\"10.1093/ptep/ptae050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the low-energy K+N elastic scatterings in the context of the in-medium quark condensate with strange quarks. The chiral ward identity connects the in-medium quark condensate to the soft limit value of the pseudoscalar correlation function evaluated in nuclear matter. The in-medium correlation function of the psuedoscalar fields with strangeness describes in-medium kaon propagation and is obtained by kaon-nucleon scattering amplitudes in the low density approximation. We construct the kaon-nucleon scattering amplitudes in chiral perturbation theory up to the next-to-leading order and add some terms of the next-to-next-to-leading order with the strange quark mass to improve expansion of the strange quark sector. We also consider the effect of a possible broad resonance state around Plab = 600 MeV/c for I = 0 reported in the previous study. The low energy constants are determined by existent K+N scattering data. We obtain good reproduction of the K+p scattering amplitude by chiral perturbation theory, while the description of the KN amplitude with I = 0 is not so satisfactory due to the lack of low energy data. Performing analytic continuation of the scattering amplitudes obtained by chiral perturbation theory to the soft limit, we estimate the in-medium strange quark condensate.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/ptep/ptae050\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae050","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
K + N elastic scatterings for estimation of in-medium quark condensate with strange quarks
We revisit the low-energy K+N elastic scatterings in the context of the in-medium quark condensate with strange quarks. The chiral ward identity connects the in-medium quark condensate to the soft limit value of the pseudoscalar correlation function evaluated in nuclear matter. The in-medium correlation function of the psuedoscalar fields with strangeness describes in-medium kaon propagation and is obtained by kaon-nucleon scattering amplitudes in the low density approximation. We construct the kaon-nucleon scattering amplitudes in chiral perturbation theory up to the next-to-leading order and add some terms of the next-to-next-to-leading order with the strange quark mass to improve expansion of the strange quark sector. We also consider the effect of a possible broad resonance state around Plab = 600 MeV/c for I = 0 reported in the previous study. The low energy constants are determined by existent K+N scattering data. We obtain good reproduction of the K+p scattering amplitude by chiral perturbation theory, while the description of the KN amplitude with I = 0 is not so satisfactory due to the lack of low energy data. Performing analytic continuation of the scattering amplitudes obtained by chiral perturbation theory to the soft limit, we estimate the in-medium strange quark condensate.