论某些自由零能旁阿贝尔李代数的自形性

IF 0.5 2区 数学 Q3 MATHEMATICS
C. E. Kofinas, A. I. Papistas
{"title":"论某些自由零能旁阿贝尔李代数的自形性","authors":"C. E. Kofinas, A. I. Papistas","doi":"10.1142/s0218196724500097","DOIUrl":null,"url":null,"abstract":"<p>For a positive integer <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>4</mn></math></span><span></span>, let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> be a free (nilpotent of class 2)-by-abelian and abelian-by-(nilpotent of class 2) Lie algebra of rank <i>n</i>. We show that the subgroup of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Aut</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> generated by the tame automorphisms and a countably infinite set of explicitly given automorphisms of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> is dense in <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Aut</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> with respect to the formal power series topology.</p>","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On automorphisms of certain free nilpotent-by-abelian Lie algebras\",\"authors\":\"C. E. Kofinas, A. I. Papistas\",\"doi\":\"10.1142/s0218196724500097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a positive integer <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>≥</mo><mn>4</mn></math></span><span></span>, let <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> be a free (nilpotent of class 2)-by-abelian and abelian-by-(nilpotent of class 2) Lie algebra of rank <i>n</i>. We show that the subgroup of <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">Aut</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> generated by the tame automorphisms and a countably infinite set of explicitly given automorphisms of <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> is dense in <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">Aut</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> with respect to the formal power series topology.</p>\",\"PeriodicalId\":13756,\"journal\":{\"name\":\"International Journal of Algebra and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Algebra and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196724500097\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196724500097","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于正整数 n≥4,设 Rn 是秩为 n 的自由(2 类无势)旁阿贝尔和旁无边际(2 类无势)的李代数。我们证明,就形式幂级数拓扑而言,由 Rn 的驯服自形和一组可数无限的明给自形生成的 Aut(Rn) 子群在 Aut(Rn) 中是密集的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On automorphisms of certain free nilpotent-by-abelian Lie algebras

For a positive integer n4, let Rn be a free (nilpotent of class 2)-by-abelian and abelian-by-(nilpotent of class 2) Lie algebra of rank n. We show that the subgroup of Aut(Rn) generated by the tame automorphisms and a countably infinite set of explicitly given automorphisms of Rn is dense in Aut(Rn) with respect to the formal power series topology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信