{"title":"论某些自由零能旁阿贝尔李代数的自形性","authors":"C. E. Kofinas, A. I. Papistas","doi":"10.1142/s0218196724500097","DOIUrl":null,"url":null,"abstract":"<p>For a positive integer <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>4</mn></math></span><span></span>, let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> be a free (nilpotent of class 2)-by-abelian and abelian-by-(nilpotent of class 2) Lie algebra of rank <i>n</i>. We show that the subgroup of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Aut</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> generated by the tame automorphisms and a countably infinite set of explicitly given automorphisms of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> is dense in <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Aut</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> with respect to the formal power series topology.</p>","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On automorphisms of certain free nilpotent-by-abelian Lie algebras\",\"authors\":\"C. E. Kofinas, A. I. Papistas\",\"doi\":\"10.1142/s0218196724500097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a positive integer <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>≥</mo><mn>4</mn></math></span><span></span>, let <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> be a free (nilpotent of class 2)-by-abelian and abelian-by-(nilpotent of class 2) Lie algebra of rank <i>n</i>. We show that the subgroup of <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">Aut</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> generated by the tame automorphisms and a countably infinite set of explicitly given automorphisms of <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> is dense in <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">Aut</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> with respect to the formal power series topology.</p>\",\"PeriodicalId\":13756,\"journal\":{\"name\":\"International Journal of Algebra and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Algebra and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196724500097\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196724500097","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On automorphisms of certain free nilpotent-by-abelian Lie algebras
For a positive integer , let be a free (nilpotent of class 2)-by-abelian and abelian-by-(nilpotent of class 2) Lie algebra of rank n. We show that the subgroup of generated by the tame automorphisms and a countably infinite set of explicitly given automorphisms of is dense in with respect to the formal power series topology.
期刊介绍:
The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.