{"title":"逆问题、索博列夫-切比雪夫多项式和渐近性","authors":"","doi":"10.1007/s11253-024-02281-3","DOIUrl":null,"url":null,"abstract":"<p>Let (<em>u, v</em>) be a pair of quasidefinite and symmetric linear functionals with {<em>P</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> and {<em>Q</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> as respective sequences of monic orthogonal polynomial (SMOP). We define a sequence of monic polynomials {<em>R</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> as follows:</p> <p><span> <span>\\(\\begin{array}{cc}\\frac{{P}_{n+2}^{\\mathrm{^{\\prime}}}\\left(x\\right)}{n+2}+{b}_{n}\\frac{{P}_{n}^{\\mathrm{^{\\prime}}}\\left(x\\right)}{n}-{Q}_{n+1}\\left(x\\right)={d}_{n-1}\\left(x\\right),& n\\ge 1.\\end{array}\\)</span> </span></p> <p>We present necessary and sufficient conditions for {<em>R</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> to be orthogonal with respect to a quasidefinite linear functional <em>w.</em> In addition, we consider the case where {<em>P</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> and {<em>Q</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> are monic Chebyshev polynomials of the first and second kinds, respectively, and study the relative outer asymptotics of Sobolev polynomials orthogonal with respect to the Sobolev inner product</p> <p><span> <span>\\(\\langle p,q\\rangle s=\\underset{-1}{\\overset{1}{\\int }}pq{\\left(1-{x}^{2}\\right)}^{-1/2}dx+{\\uplambda }_{1}\\underset{-1}{\\overset{1}{\\int }}{p}^{\\mathrm{^{\\prime}}}{q}^{\\mathrm{^{\\prime}}}{\\left(1-{x}^{2}\\right)}^{1/2}dx+{\\uplambda }_{2}\\underset{-1}{\\overset{1}{\\int }}{p}^{\\mathrm{^{\\prime}}\\mathrm{^{\\prime}}}{q}^{\\mathrm{^{\\prime}}\\mathrm{^{\\prime}}}d\\mu \\left(x\\right),\\)</span> </span></p> <p>where <em>μ</em> is a positive Borel measure associated with <em>w</em> and λ<sub>1</sub><em>,</em> λ<sub>2</sub> <em>></em> 0; λ<sub>2</sub> is a linear polynomial of λ<sub>1</sub><em>.</em></p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Problems, Sobolev–Chebyshev Polynomials, and Asymptotics\",\"authors\":\"\",\"doi\":\"10.1007/s11253-024-02281-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let (<em>u, v</em>) be a pair of quasidefinite and symmetric linear functionals with {<em>P</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> and {<em>Q</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> as respective sequences of monic orthogonal polynomial (SMOP). We define a sequence of monic polynomials {<em>R</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> as follows:</p> <p><span> <span>\\\\(\\\\begin{array}{cc}\\\\frac{{P}_{n+2}^{\\\\mathrm{^{\\\\prime}}}\\\\left(x\\\\right)}{n+2}+{b}_{n}\\\\frac{{P}_{n}^{\\\\mathrm{^{\\\\prime}}}\\\\left(x\\\\right)}{n}-{Q}_{n+1}\\\\left(x\\\\right)={d}_{n-1}\\\\left(x\\\\right),& n\\\\ge 1.\\\\end{array}\\\\)</span> </span></p> <p>We present necessary and sufficient conditions for {<em>R</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> to be orthogonal with respect to a quasidefinite linear functional <em>w.</em> In addition, we consider the case where {<em>P</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> and {<em>Q</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> are monic Chebyshev polynomials of the first and second kinds, respectively, and study the relative outer asymptotics of Sobolev polynomials orthogonal with respect to the Sobolev inner product</p> <p><span> <span>\\\\(\\\\langle p,q\\\\rangle s=\\\\underset{-1}{\\\\overset{1}{\\\\int }}pq{\\\\left(1-{x}^{2}\\\\right)}^{-1/2}dx+{\\\\uplambda }_{1}\\\\underset{-1}{\\\\overset{1}{\\\\int }}{p}^{\\\\mathrm{^{\\\\prime}}}{q}^{\\\\mathrm{^{\\\\prime}}}{\\\\left(1-{x}^{2}\\\\right)}^{1/2}dx+{\\\\uplambda }_{2}\\\\underset{-1}{\\\\overset{1}{\\\\int }}{p}^{\\\\mathrm{^{\\\\prime}}\\\\mathrm{^{\\\\prime}}}{q}^{\\\\mathrm{^{\\\\prime}}\\\\mathrm{^{\\\\prime}}}d\\\\mu \\\\left(x\\\\right),\\\\)</span> </span></p> <p>where <em>μ</em> is a positive Borel measure associated with <em>w</em> and λ<sub>1</sub><em>,</em> λ<sub>2</sub> <em>></em> 0; λ<sub>2</sub> is a linear polynomial of λ<sub>1</sub><em>.</em></p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02281-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02281-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inverse Problems, Sobolev–Chebyshev Polynomials, and Asymptotics
Let (u, v) be a pair of quasidefinite and symmetric linear functionals with {Pn}n≥0 and {Qn}n≥0 as respective sequences of monic orthogonal polynomial (SMOP). We define a sequence of monic polynomials {Rn}n≥0 as follows:
We present necessary and sufficient conditions for {Rn}n≥0 to be orthogonal with respect to a quasidefinite linear functional w. In addition, we consider the case where {Pn}n≥0 and {Qn}n≥0 are monic Chebyshev polynomials of the first and second kinds, respectively, and study the relative outer asymptotics of Sobolev polynomials orthogonal with respect to the Sobolev inner product