逆问题、索博列夫-切比雪夫多项式和渐近性

Pub Date : 2024-04-06 DOI:10.1007/s11253-024-02281-3
{"title":"逆问题、索博列夫-切比雪夫多项式和渐近性","authors":"","doi":"10.1007/s11253-024-02281-3","DOIUrl":null,"url":null,"abstract":"<p>Let (<em>u, v</em>) be a pair of quasidefinite and symmetric linear functionals with {<em>P</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> and {<em>Q</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> as respective sequences of monic orthogonal polynomial (SMOP). We define a sequence of monic polynomials {<em>R</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> as follows:</p> <p><span> <span>\\(\\begin{array}{cc}\\frac{{P}_{n+2}^{\\mathrm{^{\\prime}}}\\left(x\\right)}{n+2}+{b}_{n}\\frac{{P}_{n}^{\\mathrm{^{\\prime}}}\\left(x\\right)}{n}-{Q}_{n+1}\\left(x\\right)={d}_{n-1}\\left(x\\right),&amp; n\\ge 1.\\end{array}\\)</span> </span></p> <p>We present necessary and sufficient conditions for {<em>R</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> to be orthogonal with respect to a quasidefinite linear functional <em>w.</em> In addition, we consider the case where {<em>P</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> and {<em>Q</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> are monic Chebyshev polynomials of the first and second kinds, respectively, and study the relative outer asymptotics of Sobolev polynomials orthogonal with respect to the Sobolev inner product</p> <p><span> <span>\\(\\langle p,q\\rangle s=\\underset{-1}{\\overset{1}{\\int }}pq{\\left(1-{x}^{2}\\right)}^{-1/2}dx+{\\uplambda }_{1}\\underset{-1}{\\overset{1}{\\int }}{p}^{\\mathrm{^{\\prime}}}{q}^{\\mathrm{^{\\prime}}}{\\left(1-{x}^{2}\\right)}^{1/2}dx+{\\uplambda }_{2}\\underset{-1}{\\overset{1}{\\int }}{p}^{\\mathrm{^{\\prime}}\\mathrm{^{\\prime}}}{q}^{\\mathrm{^{\\prime}}\\mathrm{^{\\prime}}}d\\mu \\left(x\\right),\\)</span> </span></p> <p>where <em>μ</em> is a positive Borel measure associated with <em>w</em> and λ<sub>1</sub><em>,</em> λ<sub>2</sub> <em>&gt;</em> 0; λ<sub>2</sub> is a linear polynomial of λ<sub>1</sub><em>.</em></p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Problems, Sobolev–Chebyshev Polynomials, and Asymptotics\",\"authors\":\"\",\"doi\":\"10.1007/s11253-024-02281-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let (<em>u, v</em>) be a pair of quasidefinite and symmetric linear functionals with {<em>P</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> and {<em>Q</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> as respective sequences of monic orthogonal polynomial (SMOP). We define a sequence of monic polynomials {<em>R</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> as follows:</p> <p><span> <span>\\\\(\\\\begin{array}{cc}\\\\frac{{P}_{n+2}^{\\\\mathrm{^{\\\\prime}}}\\\\left(x\\\\right)}{n+2}+{b}_{n}\\\\frac{{P}_{n}^{\\\\mathrm{^{\\\\prime}}}\\\\left(x\\\\right)}{n}-{Q}_{n+1}\\\\left(x\\\\right)={d}_{n-1}\\\\left(x\\\\right),&amp; n\\\\ge 1.\\\\end{array}\\\\)</span> </span></p> <p>We present necessary and sufficient conditions for {<em>R</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> to be orthogonal with respect to a quasidefinite linear functional <em>w.</em> In addition, we consider the case where {<em>P</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> and {<em>Q</em><sub><em>n</em></sub>}<sub><em>n≥</em>0</sub> are monic Chebyshev polynomials of the first and second kinds, respectively, and study the relative outer asymptotics of Sobolev polynomials orthogonal with respect to the Sobolev inner product</p> <p><span> <span>\\\\(\\\\langle p,q\\\\rangle s=\\\\underset{-1}{\\\\overset{1}{\\\\int }}pq{\\\\left(1-{x}^{2}\\\\right)}^{-1/2}dx+{\\\\uplambda }_{1}\\\\underset{-1}{\\\\overset{1}{\\\\int }}{p}^{\\\\mathrm{^{\\\\prime}}}{q}^{\\\\mathrm{^{\\\\prime}}}{\\\\left(1-{x}^{2}\\\\right)}^{1/2}dx+{\\\\uplambda }_{2}\\\\underset{-1}{\\\\overset{1}{\\\\int }}{p}^{\\\\mathrm{^{\\\\prime}}\\\\mathrm{^{\\\\prime}}}{q}^{\\\\mathrm{^{\\\\prime}}\\\\mathrm{^{\\\\prime}}}d\\\\mu \\\\left(x\\\\right),\\\\)</span> </span></p> <p>where <em>μ</em> is a positive Borel measure associated with <em>w</em> and λ<sub>1</sub><em>,</em> λ<sub>2</sub> <em>&gt;</em> 0; λ<sub>2</sub> is a linear polynomial of λ<sub>1</sub><em>.</em></p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02281-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02281-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 (u, v) 是一对准无限对称线性函数,{Pn}n≥0 和 {Qn}n≥0 分别是单正交多项式(SMOP)序列。我们对一元多项式序列 {Rn}n≥0 的定义如下: \(\begin{array}{cc}\frac{{P}_{n+2}^{\mathrm{^{\prime}}}\left(x\right)}{n+2}+{b}_{n}\frac{{P}_{n}^{\mathrm{^{\prime}}}\left(x\right)}{n}-{Q}_{n+1}\left(x\right)={d}_{n-1}\left(x\right),& n\ge 1.\end{array}\) 我们提出了{Rn}n≥0 相对于准无限线性函数 w 正交的必要条件和充分条件。此外,我们还考虑了{Pn}n≥0和{Qn}n≥0分别是第一种和第二种单切比雪夫多项式的情况,并研究了关于索波列夫内积 \(\langle p.)正交的索波列夫多项式的相对外渐近线、q\rangle s=\underset{-1}{\overset{1}{\int }}pq{\left(1-{x}^{2}\right)}^{-1/2}dx+{\uplambda }_{1}\underset{-1}{\overset{1}{\int }}{p}^{\mathrm{^{\prime}}}{q}^{\mathrm{^{\prime}}}{\left(1-{x}^{2}\right)}^{1/2}dx+{\uplambda }_{2}\underset{-1}{\overset{1}{\int }}{p}^{\mathrm{^{\prime}}\mathrm{^{\prime}}}{q}^{\mathrm{^{\prime}}\mathrm{^{\prime}}}d\mu \left(x\right),\),其中 μ 是与 w 相关联的正 Borel 度量,λ1, λ2 >;0; λ2 是 λ1 的线性多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Inverse Problems, Sobolev–Chebyshev Polynomials, and Asymptotics

Let (u, v) be a pair of quasidefinite and symmetric linear functionals with {Pn}n≥0 and {Qn}n≥0 as respective sequences of monic orthogonal polynomial (SMOP). We define a sequence of monic polynomials {Rn}n≥0 as follows:

\(\begin{array}{cc}\frac{{P}_{n+2}^{\mathrm{^{\prime}}}\left(x\right)}{n+2}+{b}_{n}\frac{{P}_{n}^{\mathrm{^{\prime}}}\left(x\right)}{n}-{Q}_{n+1}\left(x\right)={d}_{n-1}\left(x\right),& n\ge 1.\end{array}\)

We present necessary and sufficient conditions for {Rn}n≥0 to be orthogonal with respect to a quasidefinite linear functional w. In addition, we consider the case where {Pn}n≥0 and {Qn}n≥0 are monic Chebyshev polynomials of the first and second kinds, respectively, and study the relative outer asymptotics of Sobolev polynomials orthogonal with respect to the Sobolev inner product

\(\langle p,q\rangle s=\underset{-1}{\overset{1}{\int }}pq{\left(1-{x}^{2}\right)}^{-1/2}dx+{\uplambda }_{1}\underset{-1}{\overset{1}{\int }}{p}^{\mathrm{^{\prime}}}{q}^{\mathrm{^{\prime}}}{\left(1-{x}^{2}\right)}^{1/2}dx+{\uplambda }_{2}\underset{-1}{\overset{1}{\int }}{p}^{\mathrm{^{\prime}}\mathrm{^{\prime}}}{q}^{\mathrm{^{\prime}}\mathrm{^{\prime}}}d\mu \left(x\right),\)

where μ is a positive Borel measure associated with w and λ1, λ2 > 0; λ2 is a linear polynomial of λ1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信