{"title":"多变量函数索波列夫空间中的一些尖锐兰道-科尔莫戈罗夫-纳吉不等式","authors":"","doi":"10.1007/s11253-024-02275-1","DOIUrl":null,"url":null,"abstract":"<p>For a function <em>f</em> from the Sobolev space <em>W</em><sup>1<em>,p</em></sup>(<em>C</em>)<em>,</em> where <em>C</em> ⊂ ℝ<sup><em>d</em></sup> is an open convex cone, we establish a sharp inequality estimating ∥<em>f</em>∥ <sub><em>L</em>∞</sub> via the <em>L</em><sub><em>p</em></sub>-norm of its gradient and a seminorm of the function. With the help of this inequality, we prove a sharp inequality estimating the <em>L</em><sub>∞</sub>-norm of the Radon–Nikodym derivative of a charge defined on Lebesgue measurable subsets of <em>C</em> via the <em>L</em><sub><em>p</em></sub>-norm of the gradient of this derivative and the seminorm of the charge. In the case where <em>C</em> = ℝ<sub>+</sub><sup><em>m</em></sup>× ℝ<sup><em>d−m</em></sup><em>,</em> 0 ≤ <em>m</em> ≤ <em>d,</em> we obtain inequalities estimating the <em>L</em><sub>∞</sub>-norm of a mixed derivative of the function <em>f</em> : <em>C →</em> ℝ via its <em>L</em><sub>∞</sub>-norm and the <em>L</em><sub><em>p</em></sub>-norm of the gradient of mixed derivative of this function.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"67 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Sharp Landau–Kolmogorov–Nagy-Type Inequalities in Sobolev Spaces of Multivariate Functions\",\"authors\":\"\",\"doi\":\"10.1007/s11253-024-02275-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a function <em>f</em> from the Sobolev space <em>W</em><sup>1<em>,p</em></sup>(<em>C</em>)<em>,</em> where <em>C</em> ⊂ ℝ<sup><em>d</em></sup> is an open convex cone, we establish a sharp inequality estimating ∥<em>f</em>∥ <sub><em>L</em>∞</sub> via the <em>L</em><sub><em>p</em></sub>-norm of its gradient and a seminorm of the function. With the help of this inequality, we prove a sharp inequality estimating the <em>L</em><sub>∞</sub>-norm of the Radon–Nikodym derivative of a charge defined on Lebesgue measurable subsets of <em>C</em> via the <em>L</em><sub><em>p</em></sub>-norm of the gradient of this derivative and the seminorm of the charge. In the case where <em>C</em> = ℝ<sub>+</sub><sup><em>m</em></sup>× ℝ<sup><em>d−m</em></sup><em>,</em> 0 ≤ <em>m</em> ≤ <em>d,</em> we obtain inequalities estimating the <em>L</em><sub>∞</sub>-norm of a mixed derivative of the function <em>f</em> : <em>C →</em> ℝ via its <em>L</em><sub>∞</sub>-norm and the <em>L</em><sub><em>p</em></sub>-norm of the gradient of mixed derivative of this function.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02275-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02275-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于来自索波列夫空间 W1,p(C)(其中 C ⊂ ℝd 是一个开放凸锥)的函数 f,我们建立了一个尖锐的不等式,通过其梯度的 Lp-norm 和函数的半规范来估计 ∥f∥ L∞。借助这个不等式,我们证明了一个尖锐的不等式,即通过该导数梯度的 Lp-norm 和电荷的 seminorm 来估计定义在 C 的 Lebesgue 可测子集上的电荷的 Radon-Nikodym 导数的 L∞-norm 。在 C = ℝ+m× ℝd-m, 0 ≤ m ≤ d 的情况下,我们得到了通过函数 f : C → ℝ 的 L∞-norm 和该函数混合导数梯度的 Lp-norm 估算该函数混合导数的 L∞-norm 的不等式。
Some Sharp Landau–Kolmogorov–Nagy-Type Inequalities in Sobolev Spaces of Multivariate Functions
For a function f from the Sobolev space W1,p(C), where C ⊂ ℝd is an open convex cone, we establish a sharp inequality estimating ∥f∥ L∞ via the Lp-norm of its gradient and a seminorm of the function. With the help of this inequality, we prove a sharp inequality estimating the L∞-norm of the Radon–Nikodym derivative of a charge defined on Lebesgue measurable subsets of C via the Lp-norm of the gradient of this derivative and the seminorm of the charge. In the case where C = ℝ+m× ℝd−m, 0 ≤ m ≤ d, we obtain inequalities estimating the L∞-norm of a mixed derivative of the function f : C → ℝ via its L∞-norm and the Lp-norm of the gradient of mixed derivative of this function.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.