简单复数的高级共振方案和科斯祖尔模块

Pub Date : 2024-03-29 DOI:10.1007/s10801-024-01313-2
Marian Aprodu, Gavril Farkas, Claudiu Raicu, Alessio Sammartano, Alexander I. Suciu
{"title":"简单复数的高级共振方案和科斯祖尔模块","authors":"Marian Aprodu, Gavril Farkas, Claudiu Raicu, Alessio Sammartano, Alexander I. Suciu","doi":"10.1007/s10801-024-01313-2","DOIUrl":null,"url":null,"abstract":"<p>Each connected graded, graded-commutative algebra <i>A</i> of finite type over a field <span>\\(\\Bbbk \\)</span> of characteristic zero defines a complex of finitely generated, graded modules over a symmetric algebra, whose homology graded modules are called the <i>(higher) Koszul modules</i> of <i>A</i>. In this note, we investigate the geometry of the support loci of these modules, called the <i>resonance schemes</i> of the algebra. When <span>\\(A=\\Bbbk \\langle \\Delta \\rangle \\)</span> is the exterior Stanley–Reisner algebra associated to a finite simplicial complex <span>\\(\\Delta \\)</span>, we show that the resonance schemes are reduced. We also compute the Hilbert series of the Koszul modules and give bounds on the regularity and projective dimension of these graded modules. This leads to a relationship between resonance and Hilbert series that generalizes a known formula for the Chen ranks of a right-angled Artin group.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher resonance schemes and Koszul modules of simplicial complexes\",\"authors\":\"Marian Aprodu, Gavril Farkas, Claudiu Raicu, Alessio Sammartano, Alexander I. Suciu\",\"doi\":\"10.1007/s10801-024-01313-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Each connected graded, graded-commutative algebra <i>A</i> of finite type over a field <span>\\\\(\\\\Bbbk \\\\)</span> of characteristic zero defines a complex of finitely generated, graded modules over a symmetric algebra, whose homology graded modules are called the <i>(higher) Koszul modules</i> of <i>A</i>. In this note, we investigate the geometry of the support loci of these modules, called the <i>resonance schemes</i> of the algebra. When <span>\\\\(A=\\\\Bbbk \\\\langle \\\\Delta \\\\rangle \\\\)</span> is the exterior Stanley–Reisner algebra associated to a finite simplicial complex <span>\\\\(\\\\Delta \\\\)</span>, we show that the resonance schemes are reduced. We also compute the Hilbert series of the Koszul modules and give bounds on the regularity and projective dimension of these graded modules. This leads to a relationship between resonance and Hilbert series that generalizes a known formula for the Chen ranks of a right-angled Artin group.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-024-01313-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01313-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

特征为零的域\(\Bbbk \)上的每个有限类型的连通分级、分级交换代数 A 定义了一个对称代数上有限生成的分级模块复数,其同调分级模块被称为 A 的(高等)Koszul 模块。当 \(A=\Bbbk \langle \Delta \rangle \)是与有限单纯复数 \(\Delta \)相关的外部斯坦利-雷斯纳代数时,我们证明共振方案是还原的。我们还计算了科斯祖尔模块的希尔伯特数列,并给出了这些分级模块的正则性和投影维数的边界。这导致了共振与希尔伯特数列之间的关系,而共振与希尔伯特数列概括了已知的直角阿尔丁群的陈等级公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Higher resonance schemes and Koszul modules of simplicial complexes

Each connected graded, graded-commutative algebra A of finite type over a field \(\Bbbk \) of characteristic zero defines a complex of finitely generated, graded modules over a symmetric algebra, whose homology graded modules are called the (higher) Koszul modules of A. In this note, we investigate the geometry of the support loci of these modules, called the resonance schemes of the algebra. When \(A=\Bbbk \langle \Delta \rangle \) is the exterior Stanley–Reisner algebra associated to a finite simplicial complex \(\Delta \), we show that the resonance schemes are reduced. We also compute the Hilbert series of the Koszul modules and give bounds on the regularity and projective dimension of these graded modules. This leads to a relationship between resonance and Hilbert series that generalizes a known formula for the Chen ranks of a right-angled Artin group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信