Marian Aprodu, Gavril Farkas, Claudiu Raicu, Alessio Sammartano, Alexander I. Suciu
{"title":"简单复数的高级共振方案和科斯祖尔模块","authors":"Marian Aprodu, Gavril Farkas, Claudiu Raicu, Alessio Sammartano, Alexander I. Suciu","doi":"10.1007/s10801-024-01313-2","DOIUrl":null,"url":null,"abstract":"<p>Each connected graded, graded-commutative algebra <i>A</i> of finite type over a field <span>\\(\\Bbbk \\)</span> of characteristic zero defines a complex of finitely generated, graded modules over a symmetric algebra, whose homology graded modules are called the <i>(higher) Koszul modules</i> of <i>A</i>. In this note, we investigate the geometry of the support loci of these modules, called the <i>resonance schemes</i> of the algebra. When <span>\\(A=\\Bbbk \\langle \\Delta \\rangle \\)</span> is the exterior Stanley–Reisner algebra associated to a finite simplicial complex <span>\\(\\Delta \\)</span>, we show that the resonance schemes are reduced. We also compute the Hilbert series of the Koszul modules and give bounds on the regularity and projective dimension of these graded modules. This leads to a relationship between resonance and Hilbert series that generalizes a known formula for the Chen ranks of a right-angled Artin group.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher resonance schemes and Koszul modules of simplicial complexes\",\"authors\":\"Marian Aprodu, Gavril Farkas, Claudiu Raicu, Alessio Sammartano, Alexander I. Suciu\",\"doi\":\"10.1007/s10801-024-01313-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Each connected graded, graded-commutative algebra <i>A</i> of finite type over a field <span>\\\\(\\\\Bbbk \\\\)</span> of characteristic zero defines a complex of finitely generated, graded modules over a symmetric algebra, whose homology graded modules are called the <i>(higher) Koszul modules</i> of <i>A</i>. In this note, we investigate the geometry of the support loci of these modules, called the <i>resonance schemes</i> of the algebra. When <span>\\\\(A=\\\\Bbbk \\\\langle \\\\Delta \\\\rangle \\\\)</span> is the exterior Stanley–Reisner algebra associated to a finite simplicial complex <span>\\\\(\\\\Delta \\\\)</span>, we show that the resonance schemes are reduced. We also compute the Hilbert series of the Koszul modules and give bounds on the regularity and projective dimension of these graded modules. This leads to a relationship between resonance and Hilbert series that generalizes a known formula for the Chen ranks of a right-angled Artin group.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-024-01313-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01313-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
特征为零的域\(\Bbbk \)上的每个有限类型的连通分级、分级交换代数 A 定义了一个对称代数上有限生成的分级模块复数,其同调分级模块被称为 A 的(高等)Koszul 模块。当 \(A=\Bbbk \langle \Delta \rangle \)是与有限单纯复数 \(\Delta \)相关的外部斯坦利-雷斯纳代数时,我们证明共振方案是还原的。我们还计算了科斯祖尔模块的希尔伯特数列,并给出了这些分级模块的正则性和投影维数的边界。这导致了共振与希尔伯特数列之间的关系,而共振与希尔伯特数列概括了已知的直角阿尔丁群的陈等级公式。
Higher resonance schemes and Koszul modules of simplicial complexes
Each connected graded, graded-commutative algebra A of finite type over a field \(\Bbbk \) of characteristic zero defines a complex of finitely generated, graded modules over a symmetric algebra, whose homology graded modules are called the (higher) Koszul modules of A. In this note, we investigate the geometry of the support loci of these modules, called the resonance schemes of the algebra. When \(A=\Bbbk \langle \Delta \rangle \) is the exterior Stanley–Reisner algebra associated to a finite simplicial complex \(\Delta \), we show that the resonance schemes are reduced. We also compute the Hilbert series of the Koszul modules and give bounds on the regularity and projective dimension of these graded modules. This leads to a relationship between resonance and Hilbert series that generalizes a known formula for the Chen ranks of a right-angled Artin group.