{"title":"论群环上某些模块的无势性","authors":"","doi":"10.1007/s11253-024-02279-x","DOIUrl":null,"url":null,"abstract":"<p>We study <em>RG</em>-modules that do not contain nonzero <em>G</em>-perfect factors. In particular, it is shown that if a group <em>G</em> is finite and <em>R</em> is a Dedekind domain with some additional restrictions, then these <em>RG</em>-modules are <em>G</em>-nilpotent.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"57 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Nilpotency of Some Modules Over Group Rings\",\"authors\":\"\",\"doi\":\"10.1007/s11253-024-02279-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study <em>RG</em>-modules that do not contain nonzero <em>G</em>-perfect factors. In particular, it is shown that if a group <em>G</em> is finite and <em>R</em> is a Dedekind domain with some additional restrictions, then these <em>RG</em>-modules are <em>G</em>-nilpotent.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02279-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02279-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究不包含非零 G 完全因子的 RG 模块。我们特别指出,如果一个群 G 是有限的,而 R 是带有一些附加限制的 Dedekind 域,那么这些 RG 模块就是 G-nilpotent 的。
On the Nilpotency of Some Modules Over Group Rings
We study RG-modules that do not contain nonzero G-perfect factors. In particular, it is shown that if a group G is finite and R is a Dedekind domain with some additional restrictions, then these RG-modules are G-nilpotent.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.