Kostiantyn Iusenko, Eduardo do Nascimento Marcos, Victor do Valle Pretti
{"title":"平稳性的相对同源性标准","authors":"Kostiantyn Iusenko, Eduardo do Nascimento Marcos, Victor do Valle Pretti","doi":"arxiv-2404.08534","DOIUrl":null,"url":null,"abstract":"We investigate the relationship between smoothness and the relative global\ndimension. We prove that a smooth ring map $B\\to A$ between commutative rings\nimplies the finiteness of the relative global dimension\n$\\operatorname{gldim}(A,B)$. Conversely, we identify a sufficient condition on\n$B$ such that the finiteness of $\\operatorname{gldim}(A,B)$ implies the\nsmoothness of the map $B\\to A$.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"299 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A relative homology criteria of smoothness\",\"authors\":\"Kostiantyn Iusenko, Eduardo do Nascimento Marcos, Victor do Valle Pretti\",\"doi\":\"arxiv-2404.08534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the relationship between smoothness and the relative global\\ndimension. We prove that a smooth ring map $B\\\\to A$ between commutative rings\\nimplies the finiteness of the relative global dimension\\n$\\\\operatorname{gldim}(A,B)$. Conversely, we identify a sufficient condition on\\n$B$ such that the finiteness of $\\\\operatorname{gldim}(A,B)$ implies the\\nsmoothness of the map $B\\\\to A$.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"299 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.08534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.08534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We investigate the relationship between smoothness and the relative global
dimension. We prove that a smooth ring map $B\to A$ between commutative rings
implies the finiteness of the relative global dimension
$\operatorname{gldim}(A,B)$. Conversely, we identify a sufficient condition on
$B$ such that the finiteness of $\operatorname{gldim}(A,B)$ implies the
smoothness of the map $B\to A$.