{"title":"论水流的传输","authors":"Paolo Bonicatto","doi":"10.1007/s00032-024-00394-9","DOIUrl":null,"url":null,"abstract":"<p>In this work, we consider some evolutionary models for <i>k</i>-currents in <span>\\(\\mathbb {R}^d\\)</span>. We study a transport-type equation which can be seen as a generalisation of the transport/continuity equation and can be used to model the movement of singular structures in a medium, such as vortex points/lines/sheets in fluids or dislocation loops in crystals. We provide a detailed overview of recent results on this equation obtained mostly in (Bonicatto et al. Transport of currents and geometric Rademacher-type theorems. arXiv:2207.03922, 2022; Bonicatto et al. Existence and uniqueness for the transport of currents by Lipschitz vector fields. arXiv:2303.03218, 2023). We work within the setting of integral (sometimes merely normal) <i>k</i>-currents, covering in particular existence and uniqueness of solutions, structure theorems, rectifiability, and a number of Rademacher-type differentiability results. These differentiability results are sharp and can be formulated in terms of a novel condition we called “Negligible Criticality condition” (NC), which turns out to be related also to Sard’s Theorem. We finally provide a new stability result for integral currents satisfying (NC) in a uniform way.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Transport of Currents\",\"authors\":\"Paolo Bonicatto\",\"doi\":\"10.1007/s00032-024-00394-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we consider some evolutionary models for <i>k</i>-currents in <span>\\\\(\\\\mathbb {R}^d\\\\)</span>. We study a transport-type equation which can be seen as a generalisation of the transport/continuity equation and can be used to model the movement of singular structures in a medium, such as vortex points/lines/sheets in fluids or dislocation loops in crystals. We provide a detailed overview of recent results on this equation obtained mostly in (Bonicatto et al. Transport of currents and geometric Rademacher-type theorems. arXiv:2207.03922, 2022; Bonicatto et al. Existence and uniqueness for the transport of currents by Lipschitz vector fields. arXiv:2303.03218, 2023). We work within the setting of integral (sometimes merely normal) <i>k</i>-currents, covering in particular existence and uniqueness of solutions, structure theorems, rectifiability, and a number of Rademacher-type differentiability results. These differentiability results are sharp and can be formulated in terms of a novel condition we called “Negligible Criticality condition” (NC), which turns out to be related also to Sard’s Theorem. We finally provide a new stability result for integral currents satisfying (NC) in a uniform way.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00032-024-00394-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00032-024-00394-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在这项工作中,我们考虑了 k 流在 \(\mathbb {R}^d\) 中的一些演化模型。我们研究的是一种传输型方程,它可以看作是传输/连续性方程的广义化,可以用来模拟介质中奇异结构的运动,如流体中的涡旋点/线/片或晶体中的位错环。我们详细概述了有关该方程的最新成果,这些成果主要发表在(Bonicatto et al.)我们在积分(有时仅仅是法向)K 电流的背景下开展工作,尤其涉及解的存在性和唯一性、结构定理、可矫正性以及一些拉德马赫式的可微分性结果。这些可微分性结果非常尖锐,可以用一个我们称为 "可忽略临界条件"(Negligible Criticality condition,NC)的新条件来表述,事实证明它也与萨德定理有关。最后,我们以统一的方式为满足 (NC) 的积分电流提供了一个新的稳定性结果。
In this work, we consider some evolutionary models for k-currents in \(\mathbb {R}^d\). We study a transport-type equation which can be seen as a generalisation of the transport/continuity equation and can be used to model the movement of singular structures in a medium, such as vortex points/lines/sheets in fluids or dislocation loops in crystals. We provide a detailed overview of recent results on this equation obtained mostly in (Bonicatto et al. Transport of currents and geometric Rademacher-type theorems. arXiv:2207.03922, 2022; Bonicatto et al. Existence and uniqueness for the transport of currents by Lipschitz vector fields. arXiv:2303.03218, 2023). We work within the setting of integral (sometimes merely normal) k-currents, covering in particular existence and uniqueness of solutions, structure theorems, rectifiability, and a number of Rademacher-type differentiability results. These differentiability results are sharp and can be formulated in terms of a novel condition we called “Negligible Criticality condition” (NC), which turns out to be related also to Sard’s Theorem. We finally provide a new stability result for integral currents satisfying (NC) in a uniform way.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.