StockGPT:用于股票预测和交易的 GenAI 模型

Dat Mai
{"title":"StockGPT:用于股票预测和交易的 GenAI 模型","authors":"Dat Mai","doi":"arxiv-2404.05101","DOIUrl":null,"url":null,"abstract":"This paper introduces StockGPT, an autoregressive \"number\" model pretrained\ndirectly on the history of daily U.S. stock returns. Treating each return\nseries as a sequence of tokens, the model excels at understanding and\npredicting the highly intricate stock return dynamics. Instead of relying on\nhandcrafted trading patterns using historical stock prices, StockGPT\nautomatically learns the hidden representations predictive of future returns\nvia its attention mechanism. On a held-out test sample from 2001 to 2023, a\ndaily rebalanced long-short portfolio formed from StockGPT predictions earns an\nannual return of 119% with a Sharpe ratio of 6.5. The StockGPT-based portfolio\ncompletely explains away momentum and long-/short-term reversals, eliminating\nthe need for manually crafted price-based strategies and also encompasses most\nleading stock market factors. This highlights the immense promise of generative\nAI in surpassing human in making complex financial investment decisions and\nillustrates the efficacy of the attention mechanism of large language models\nwhen applied to a completely different domain.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"StockGPT: A GenAI Model for Stock Prediction and Trading\",\"authors\":\"Dat Mai\",\"doi\":\"arxiv-2404.05101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces StockGPT, an autoregressive \\\"number\\\" model pretrained\\ndirectly on the history of daily U.S. stock returns. Treating each return\\nseries as a sequence of tokens, the model excels at understanding and\\npredicting the highly intricate stock return dynamics. Instead of relying on\\nhandcrafted trading patterns using historical stock prices, StockGPT\\nautomatically learns the hidden representations predictive of future returns\\nvia its attention mechanism. On a held-out test sample from 2001 to 2023, a\\ndaily rebalanced long-short portfolio formed from StockGPT predictions earns an\\nannual return of 119% with a Sharpe ratio of 6.5. The StockGPT-based portfolio\\ncompletely explains away momentum and long-/short-term reversals, eliminating\\nthe need for manually crafted price-based strategies and also encompasses most\\nleading stock market factors. This highlights the immense promise of generative\\nAI in surpassing human in making complex financial investment decisions and\\nillustrates the efficacy of the attention mechanism of large language models\\nwhen applied to a completely different domain.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.05101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.05101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍的 StockGPT 是一个自回归 "数字 "模型,直接根据每日美国股票收益率的历史记录进行预训练。该模型将每个收益序列视为一串代币,擅长理解和预测高度复杂的股票收益动态。StockGPT 不依赖于利用历史股价精心设计的交易模式,而是通过其注意力机制自动学习预测未来回报的隐藏表征。在 2001 年至 2023 年期间的测试样本中,根据 StockGPT 预测形成的每日再平衡多空投资组合的年收益率为 119%,夏普比率为 6.5。基于 StockGPT 预测的投资组合完全解释了动量和长短期反转,无需人工制定基于价格的策略,而且还包含了大多数主要的股市因素。这凸显了生成式人工智能在超越人类做出复杂的金融投资决策方面的巨大前景,同时也证明了大型语言模型的注意力机制在应用于完全不同的领域时的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
StockGPT: A GenAI Model for Stock Prediction and Trading
This paper introduces StockGPT, an autoregressive "number" model pretrained directly on the history of daily U.S. stock returns. Treating each return series as a sequence of tokens, the model excels at understanding and predicting the highly intricate stock return dynamics. Instead of relying on handcrafted trading patterns using historical stock prices, StockGPT automatically learns the hidden representations predictive of future returns via its attention mechanism. On a held-out test sample from 2001 to 2023, a daily rebalanced long-short portfolio formed from StockGPT predictions earns an annual return of 119% with a Sharpe ratio of 6.5. The StockGPT-based portfolio completely explains away momentum and long-/short-term reversals, eliminating the need for manually crafted price-based strategies and also encompasses most leading stock market factors. This highlights the immense promise of generative AI in surpassing human in making complex financial investment decisions and illustrates the efficacy of the attention mechanism of large language models when applied to a completely different domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信