预测竞争性行业中的并购:基于时间动态和行业网络的模型

Dayu Yang
{"title":"预测竞争性行业中的并购:基于时间动态和行业网络的模型","authors":"Dayu Yang","doi":"arxiv-2404.07298","DOIUrl":null,"url":null,"abstract":"M&A activities are pivotal for market consolidation, enabling firms to\naugment market power through strategic complementarities. Existing research\noften overlooks the peer effect, the mutual influence of M&A behaviors among\nfirms, and fails to capture complex interdependencies within industry networks.\nCommon approaches suffer from reliance on ad-hoc feature engineering, data\ntruncation leading to significant information loss, reduced predictive\naccuracy, and challenges in real-world application. Additionally, the rarity of\nM&A events necessitates data rebalancing in conventional models, introducing\nbias and undermining prediction reliability. We propose an innovative M&A\npredictive model utilizing the Temporal Dynamic Industry Network (TDIN),\nleveraging temporal point processes and deep learning to adeptly capture\nindustry-wide M&A dynamics. This model facilitates accurate, detailed\ndeal-level predictions without arbitrary data manipulation or rebalancing,\ndemonstrated through superior evaluation results from M&A cases between January\n1997 and December 2020. Our approach marks a significant improvement over\ntraditional models by providing detailed insights into M&A activities and\nstrategic recommendations for specific firms.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"48 13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Mergers and Acquisitions in Competitive Industries: A Model Based on Temporal Dynamics and Industry Networks\",\"authors\":\"Dayu Yang\",\"doi\":\"arxiv-2404.07298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"M&A activities are pivotal for market consolidation, enabling firms to\\naugment market power through strategic complementarities. Existing research\\noften overlooks the peer effect, the mutual influence of M&A behaviors among\\nfirms, and fails to capture complex interdependencies within industry networks.\\nCommon approaches suffer from reliance on ad-hoc feature engineering, data\\ntruncation leading to significant information loss, reduced predictive\\naccuracy, and challenges in real-world application. Additionally, the rarity of\\nM&A events necessitates data rebalancing in conventional models, introducing\\nbias and undermining prediction reliability. We propose an innovative M&A\\npredictive model utilizing the Temporal Dynamic Industry Network (TDIN),\\nleveraging temporal point processes and deep learning to adeptly capture\\nindustry-wide M&A dynamics. This model facilitates accurate, detailed\\ndeal-level predictions without arbitrary data manipulation or rebalancing,\\ndemonstrated through superior evaluation results from M&A cases between January\\n1997 and December 2020. Our approach marks a significant improvement over\\ntraditional models by providing detailed insights into M&A activities and\\nstrategic recommendations for specific firms.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"48 13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.07298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.07298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

并购活动是市场整合的关键,使企业能够通过战略互补增强市场力量。现有的研究往往忽视了同行效应,即企业间并购行为的相互影响,也未能捕捉到行业网络内复杂的相互依存关系。常见的研究方法存在以下问题:依赖于临时特征工程、数据截流导致大量信息丢失、预测准确性降低,以及在实际应用中面临挑战。此外,并购事件的罕见性使得传统模型必须重新平衡数据,从而引入偏差并削弱预测的可靠性。我们提出了一种利用时序动态行业网络(TDIN)的创新型并购预测模型,利用时序点过程和深度学习来巧妙地捕捉整个行业的并购动态。该模型无需对数据进行任意处理或重新平衡,即可进行准确、详细的交易级预测,1997 年 1 月至 2020 年 12 月期间并购案例的卓越评估结果证明了这一点。我们的方法提供了对并购活动的详细见解和针对特定公司的战略建议,是对传统模型的重大改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Mergers and Acquisitions in Competitive Industries: A Model Based on Temporal Dynamics and Industry Networks
M&A activities are pivotal for market consolidation, enabling firms to augment market power through strategic complementarities. Existing research often overlooks the peer effect, the mutual influence of M&A behaviors among firms, and fails to capture complex interdependencies within industry networks. Common approaches suffer from reliance on ad-hoc feature engineering, data truncation leading to significant information loss, reduced predictive accuracy, and challenges in real-world application. Additionally, the rarity of M&A events necessitates data rebalancing in conventional models, introducing bias and undermining prediction reliability. We propose an innovative M&A predictive model utilizing the Temporal Dynamic Industry Network (TDIN), leveraging temporal point processes and deep learning to adeptly capture industry-wide M&A dynamics. This model facilitates accurate, detailed deal-level predictions without arbitrary data manipulation or rebalancing, demonstrated through superior evaluation results from M&A cases between January 1997 and December 2020. Our approach marks a significant improvement over traditional models by providing detailed insights into M&A activities and strategic recommendations for specific firms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信