BERT 主题驱动的股市预测:解读情绪洞察

Enmin Zhu
{"title":"BERT 主题驱动的股市预测:解读情绪洞察","authors":"Enmin Zhu","doi":"arxiv-2404.02053","DOIUrl":null,"url":null,"abstract":"This paper explores the intersection of Natural Language Processing (NLP) and\nfinancial analysis, focusing on the impact of sentiment analysis in stock price\nprediction. We employ BERTopic, an advanced NLP technique, to analyze the\nsentiment of topics derived from stock market comments. Our methodology\nintegrates this sentiment analysis with various deep learning models, renowned\nfor their effectiveness in time series and stock prediction tasks. Through\ncomprehensive experiments, we demonstrate that incorporating topic sentiment\nnotably enhances the performance of these models. The results indicate that\ntopics in stock market comments provide implicit, valuable insights into stock\nmarket volatility and price trends. This study contributes to the field by\nshowcasing the potential of NLP in enriching financial analysis and opens up\navenues for further research into real-time sentiment analysis and the\nexploration of emotional and contextual aspects of market sentiment. The\nintegration of advanced NLP techniques like BERTopic with traditional financial\nanalysis methods marks a step forward in developing more sophisticated tools\nfor understanding and predicting market behaviors.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BERTopic-Driven Stock Market Predictions: Unraveling Sentiment Insights\",\"authors\":\"Enmin Zhu\",\"doi\":\"arxiv-2404.02053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the intersection of Natural Language Processing (NLP) and\\nfinancial analysis, focusing on the impact of sentiment analysis in stock price\\nprediction. We employ BERTopic, an advanced NLP technique, to analyze the\\nsentiment of topics derived from stock market comments. Our methodology\\nintegrates this sentiment analysis with various deep learning models, renowned\\nfor their effectiveness in time series and stock prediction tasks. Through\\ncomprehensive experiments, we demonstrate that incorporating topic sentiment\\nnotably enhances the performance of these models. The results indicate that\\ntopics in stock market comments provide implicit, valuable insights into stock\\nmarket volatility and price trends. This study contributes to the field by\\nshowcasing the potential of NLP in enriching financial analysis and opens up\\navenues for further research into real-time sentiment analysis and the\\nexploration of emotional and contextual aspects of market sentiment. The\\nintegration of advanced NLP techniques like BERTopic with traditional financial\\nanalysis methods marks a step forward in developing more sophisticated tools\\nfor understanding and predicting market behaviors.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.02053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.02053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了自然语言处理(NLP)和金融分析的交叉点,重点是情感分析对股价预测的影响。我们采用 BERTopic(一种先进的 NLP 技术)来分析从股市评论中得出的话题情绪。我们的方法将这种情感分析与各种深度学习模型结合起来,这些模型在时间序列和股票预测任务中效果显著。通过全面的实验,我们证明了将话题情感纳入模型能显著提高这些模型的性能。结果表明,股票市场评论中的主题提供了对股票市场波动和价格趋势的隐含的、有价值的见解。这项研究展示了 NLP 在丰富金融分析方面的潜力,从而为该领域做出了贡献,并为进一步研究实时情感分析以及探索市场情感的情感和语境方面开辟了途径。将 BERTopic 等先进的 NLP 技术与传统的金融分析方法相结合,标志着在开发用于理解和预测市场行为的更复杂工具方面向前迈进了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BERTopic-Driven Stock Market Predictions: Unraveling Sentiment Insights
This paper explores the intersection of Natural Language Processing (NLP) and financial analysis, focusing on the impact of sentiment analysis in stock price prediction. We employ BERTopic, an advanced NLP technique, to analyze the sentiment of topics derived from stock market comments. Our methodology integrates this sentiment analysis with various deep learning models, renowned for their effectiveness in time series and stock prediction tasks. Through comprehensive experiments, we demonstrate that incorporating topic sentiment notably enhances the performance of these models. The results indicate that topics in stock market comments provide implicit, valuable insights into stock market volatility and price trends. This study contributes to the field by showcasing the potential of NLP in enriching financial analysis and opens up avenues for further research into real-time sentiment analysis and the exploration of emotional and contextual aspects of market sentiment. The integration of advanced NLP techniques like BERTopic with traditional financial analysis methods marks a step forward in developing more sophisticated tools for understanding and predicting market behaviors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信