支持 P2P 云存储中的高效视频文件流

IF 3.3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jinsung Kim, Eunsam Kim
{"title":"支持 P2P 云存储中的高效视频文件流","authors":"Jinsung Kim, Eunsam Kim","doi":"10.1007/s12083-024-01691-1","DOIUrl":null,"url":null,"abstract":"<p>Peer-to-Peer cloud storage has emerged as an alternative to address the high installation and maintenance costs in conventional cloud storage based on client/server architectures. Since P2P cloud storage must guarantee the same level of data availability as conventional cloud storage, it has employed replication and erasure coding to redundantly store data among peers in P2P environments where the peer churn rate is high. However, most studies using two techniques have focused only on increasing data availability. Especially for video files stored in P2P cloud storage, in addition to guaranteeing their availability, it is critical but challenging to ensure that they are played back in real time by video player applications as if they were being read from local storage. To address this challenge in this paper, we propose a novel hybrid redundancy scheme to support efficient video file streaming while ensuring the availability of video files in P2P cloud storage. The main contributions of our work are threefold. First, we can achieve higher storage efficiency and better streaming performance by employing both erasure coding and replication simultaneously. Second, we can maximize the number of concurrent playback requests supported while minimizing the decrease in file availability by dynamically adjusting the redundancy degree of each video file according to its popularity. Third, we can further improve the performance by efficiently using storage space with our proposed two-phase replacement policy. Finally, we demonstrate through extensive experiments that our scheme outperforms other techniques by utilizing the benefits of both replication and erasure coding.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"1 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supporting efficient video file streaming in P2P cloud storage\",\"authors\":\"Jinsung Kim, Eunsam Kim\",\"doi\":\"10.1007/s12083-024-01691-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Peer-to-Peer cloud storage has emerged as an alternative to address the high installation and maintenance costs in conventional cloud storage based on client/server architectures. Since P2P cloud storage must guarantee the same level of data availability as conventional cloud storage, it has employed replication and erasure coding to redundantly store data among peers in P2P environments where the peer churn rate is high. However, most studies using two techniques have focused only on increasing data availability. Especially for video files stored in P2P cloud storage, in addition to guaranteeing their availability, it is critical but challenging to ensure that they are played back in real time by video player applications as if they were being read from local storage. To address this challenge in this paper, we propose a novel hybrid redundancy scheme to support efficient video file streaming while ensuring the availability of video files in P2P cloud storage. The main contributions of our work are threefold. First, we can achieve higher storage efficiency and better streaming performance by employing both erasure coding and replication simultaneously. Second, we can maximize the number of concurrent playback requests supported while minimizing the decrease in file availability by dynamically adjusting the redundancy degree of each video file according to its popularity. Third, we can further improve the performance by efficiently using storage space with our proposed two-phase replacement policy. Finally, we demonstrate through extensive experiments that our scheme outperforms other techniques by utilizing the benefits of both replication and erasure coding.</p>\",\"PeriodicalId\":49313,\"journal\":{\"name\":\"Peer-To-Peer Networking and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer-To-Peer Networking and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12083-024-01691-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01691-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

点对点云存储的出现,解决了基于客户端/服务器架构的传统云存储安装和维护成本高的问题。由于点对点云存储必须保证与传统云存储相同水平的数据可用性,因此它采用了复制和擦除编码技术,以便在点对点环境中冗余存储点对点之间的数据,因为点对点环境中的点对点流失率很高。不过,大多数使用这两种技术的研究都只关注提高数据可用性。特别是对于存储在 P2P 云存储中的视频文件,除了要保证其可用性外,确保视频播放器应用程序能实时播放这些文件,就像从本地存储中读取一样,这一点至关重要,但也极具挑战性。为了应对这一挑战,我们在本文中提出了一种新颖的混合冗余方案,以支持高效的视频文件流,同时确保视频文件在 P2P 云存储中的可用性。我们的工作主要有三方面的贡献。首先,我们可以通过同时采用擦除编码和复制实现更高的存储效率和更好的流性能。其次,我们可以根据每个视频文件的受欢迎程度动态调整其冗余度,从而最大限度地增加支持的并发播放请求数量,同时最大限度地减少文件可用性的降低。第三,利用我们提出的两阶段替换策略,有效利用存储空间,从而进一步提高性能。最后,我们通过大量实验证明,通过利用复制和擦除编码的优势,我们的方案优于其他技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Supporting efficient video file streaming in P2P cloud storage

Supporting efficient video file streaming in P2P cloud storage

Peer-to-Peer cloud storage has emerged as an alternative to address the high installation and maintenance costs in conventional cloud storage based on client/server architectures. Since P2P cloud storage must guarantee the same level of data availability as conventional cloud storage, it has employed replication and erasure coding to redundantly store data among peers in P2P environments where the peer churn rate is high. However, most studies using two techniques have focused only on increasing data availability. Especially for video files stored in P2P cloud storage, in addition to guaranteeing their availability, it is critical but challenging to ensure that they are played back in real time by video player applications as if they were being read from local storage. To address this challenge in this paper, we propose a novel hybrid redundancy scheme to support efficient video file streaming while ensuring the availability of video files in P2P cloud storage. The main contributions of our work are threefold. First, we can achieve higher storage efficiency and better streaming performance by employing both erasure coding and replication simultaneously. Second, we can maximize the number of concurrent playback requests supported while minimizing the decrease in file availability by dynamically adjusting the redundancy degree of each video file according to its popularity. Third, we can further improve the performance by efficiently using storage space with our proposed two-phase replacement policy. Finally, we demonstrate through extensive experiments that our scheme outperforms other techniques by utilizing the benefits of both replication and erasure coding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Peer-To-Peer Networking and Applications
Peer-To-Peer Networking and Applications COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
8.00
自引率
7.10%
发文量
145
审稿时长
12 months
期刊介绍: The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security. The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain. Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信