David M. J. S. Bowman, Nicolas Borchers-Arriagada, Andrew Macintosh, Donald W. Butler, Grant J. Williamson, Fay H. Johnston
{"title":"热带稀树草原碳管理项目必须考虑气候变化因素,以避免适应不良:澳大利亚北领地顶端西部空气污染恶化的案例","authors":"David M. J. S. Bowman, Nicolas Borchers-Arriagada, Andrew Macintosh, Donald W. Butler, Grant J. Williamson, Fay H. Johnston","doi":"10.1071/rj23049","DOIUrl":null,"url":null,"abstract":"<p>Savanna fires are a major source of greenhouse gas (GHG) and particulate pollution globally. Since mid-2006, an Australian Government carbon offset program has incentivised Northern Territory land managers to undertake early dry-season savanna burning with the aim of reducing late dry-season wildfires and associated GHG emissions. The focus of this study is addressing concern that savanna burning carbon abatement projects are causing worsening air pollution in the city of Darwin. Reconstructed concentrations of daily particulate matter of <2.5 μm (PM<sub>2.5</sub>) since the 1960s showed since 2000s a worsening in PM<sub>2.5</sub> in the early dry season (May, June, July), some improvement in the late dry season (August, September, October) with little overall difference for the whole dry season. Remote-sensing PM<sub>2.5</sub> estimates in Darwin were correlated with region-wide PM<sub>2.5</sub> estimates during the early dry season. Remote-sensing analysis of area burned and intensity of fires since 2002 showed that savanna carbon projects have shifted burning to the early dry season and caused increases in fire intensity compared with non-project areas. Increased fire intensity appears to follow sharply declining fuel moisture, as well as management effects on carbon project areas, which have possibly undermined the efficacy of savanna burning projects in reducing GHG emissions. More thorough evaluation of underlying assumption of savanna burning carbon abatement in Australia and elsewhere in the world is required to avoid maladaptation, such as over-crediting, smoke pollution, and other environmental harms.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climate change must be factored into savanna carbon- management projects to avoid maladaptation: the case of worsening air pollution in western Top End of the Northern Territory, Australia\",\"authors\":\"David M. J. S. Bowman, Nicolas Borchers-Arriagada, Andrew Macintosh, Donald W. Butler, Grant J. Williamson, Fay H. Johnston\",\"doi\":\"10.1071/rj23049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Savanna fires are a major source of greenhouse gas (GHG) and particulate pollution globally. Since mid-2006, an Australian Government carbon offset program has incentivised Northern Territory land managers to undertake early dry-season savanna burning with the aim of reducing late dry-season wildfires and associated GHG emissions. The focus of this study is addressing concern that savanna burning carbon abatement projects are causing worsening air pollution in the city of Darwin. Reconstructed concentrations of daily particulate matter of <2.5 μm (PM<sub>2.5</sub>) since the 1960s showed since 2000s a worsening in PM<sub>2.5</sub> in the early dry season (May, June, July), some improvement in the late dry season (August, September, October) with little overall difference for the whole dry season. Remote-sensing PM<sub>2.5</sub> estimates in Darwin were correlated with region-wide PM<sub>2.5</sub> estimates during the early dry season. Remote-sensing analysis of area burned and intensity of fires since 2002 showed that savanna carbon projects have shifted burning to the early dry season and caused increases in fire intensity compared with non-project areas. Increased fire intensity appears to follow sharply declining fuel moisture, as well as management effects on carbon project areas, which have possibly undermined the efficacy of savanna burning projects in reducing GHG emissions. More thorough evaluation of underlying assumption of savanna burning carbon abatement in Australia and elsewhere in the world is required to avoid maladaptation, such as over-crediting, smoke pollution, and other environmental harms.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1071/rj23049\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1071/rj23049","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Climate change must be factored into savanna carbon- management projects to avoid maladaptation: the case of worsening air pollution in western Top End of the Northern Territory, Australia
Savanna fires are a major source of greenhouse gas (GHG) and particulate pollution globally. Since mid-2006, an Australian Government carbon offset program has incentivised Northern Territory land managers to undertake early dry-season savanna burning with the aim of reducing late dry-season wildfires and associated GHG emissions. The focus of this study is addressing concern that savanna burning carbon abatement projects are causing worsening air pollution in the city of Darwin. Reconstructed concentrations of daily particulate matter of <2.5 μm (PM2.5) since the 1960s showed since 2000s a worsening in PM2.5 in the early dry season (May, June, July), some improvement in the late dry season (August, September, October) with little overall difference for the whole dry season. Remote-sensing PM2.5 estimates in Darwin were correlated with region-wide PM2.5 estimates during the early dry season. Remote-sensing analysis of area burned and intensity of fires since 2002 showed that savanna carbon projects have shifted burning to the early dry season and caused increases in fire intensity compared with non-project areas. Increased fire intensity appears to follow sharply declining fuel moisture, as well as management effects on carbon project areas, which have possibly undermined the efficacy of savanna burning projects in reducing GHG emissions. More thorough evaluation of underlying assumption of savanna burning carbon abatement in Australia and elsewhere in the world is required to avoid maladaptation, such as over-crediting, smoke pollution, and other environmental harms.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.