求助PDF
{"title":"用大集中的成对整数逼近无理数","authors":"ARTŪRAS DUBICKAS","doi":"10.1017/s0004972724000194","DOIUrl":null,"url":null,"abstract":"We show that there is a set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline1.png\" /> <jats:tex-math> $S \\subseteq {\\mathbb N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with lower density arbitrarily close to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline2.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that, for each sufficiently large real number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline3.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the inequality <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline4.png\" /> <jats:tex-math> $|m\\alpha -n| \\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> holds for every pair <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline5.png\" /> <jats:tex-math> $(m,n) \\in S^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. On the other hand, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline6.png\" /> <jats:tex-math> $S \\subseteq {\\mathbb N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline7.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then, for each irrational <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline8.png\" /> <jats:tex-math> $\\alpha>0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and any positive <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline9.png\" /> <jats:tex-math> $\\varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there exist <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline10.png\" /> <jats:tex-math> $m,n \\in S$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000194_inline11.png\" /> <jats:tex-math> $|m\\alpha -n|<\\varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"25 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APPROXIMATION OF IRRATIONAL NUMBERS BY PAIRS OF INTEGERS FROM A LARGE SET\",\"authors\":\"ARTŪRAS DUBICKAS\",\"doi\":\"10.1017/s0004972724000194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that there is a set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000194_inline1.png\\\" /> <jats:tex-math> $S \\\\subseteq {\\\\mathbb N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with lower density arbitrarily close to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000194_inline2.png\\\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that, for each sufficiently large real number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000194_inline3.png\\\" /> <jats:tex-math> $\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the inequality <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000194_inline4.png\\\" /> <jats:tex-math> $|m\\\\alpha -n| \\\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> holds for every pair <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000194_inline5.png\\\" /> <jats:tex-math> $(m,n) \\\\in S^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. On the other hand, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000194_inline6.png\\\" /> <jats:tex-math> $S \\\\subseteq {\\\\mathbb N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000194_inline7.png\\\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then, for each irrational <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000194_inline8.png\\\" /> <jats:tex-math> $\\\\alpha>0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and any positive <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000194_inline9.png\\\" /> <jats:tex-math> $\\\\varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there exist <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000194_inline10.png\\\" /> <jats:tex-math> $m,n \\\\in S$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000194_inline11.png\\\" /> <jats:tex-math> $|m\\\\alpha -n|<\\\\varepsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000194\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000194","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
APPROXIMATION OF IRRATIONAL NUMBERS BY PAIRS OF INTEGERS FROM A LARGE SET
We show that there is a set $S \subseteq {\mathbb N}$ with lower density arbitrarily close to $1$ such that, for each sufficiently large real number $\alpha $ , the inequality $|m\alpha -n| \geq 1$ holds for every pair $(m,n) \in S^2$ . On the other hand, if $S \subseteq {\mathbb N}$ has density $1$ , then, for each irrational $\alpha>0$ and any positive $\varepsilon $ , there exist $m,n \in S$ for which $|m\alpha -n|<\varepsilon $ .