利用机器学习模型了解韩国的公司债券违约情况*

IF 1.8 4区 经济学 Q2 BUSINESS, FINANCE
Dojoon Park, Jun Kyung Auh, Giwan Song, Young Ho Eom
{"title":"利用机器学习模型了解韩国的公司债券违约情况*","authors":"Dojoon Park,&nbsp;Jun Kyung Auh,&nbsp;Giwan Song,&nbsp;Young Ho Eom","doi":"10.1111/ajfs.12470","DOIUrl":null,"url":null,"abstract":"<p>We investigate corporate bond defaults from 1995 to 2020 using hand-collected data from hard-copy publications in Korea. Using an under-sampling method, we construct default prediction models based on machine learning models as well as a logistic model. The empirical results show that the random forest model outperforms the others. However, regardless of the models used, model performance in financial crisis periods is significantly worse than it is in non-crisis periods. This finding suggests the need for additional information to improve model performance during crises when the default prediction is the most relevant. Furthermore, the dominant predictor of defaults before the global financial crisis was the debt ratio, while subsequently, the coverage ratio has become the most important predictor.</p>","PeriodicalId":8570,"journal":{"name":"Asia-Pacific Journal of Financial Studies","volume":"53 2","pages":"238-276"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ajfs.12470","citationCount":"0","resultStr":"{\"title\":\"Understanding Corporate Bond Defaults in Korea Using Machine Learning Models*\",\"authors\":\"Dojoon Park,&nbsp;Jun Kyung Auh,&nbsp;Giwan Song,&nbsp;Young Ho Eom\",\"doi\":\"10.1111/ajfs.12470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate corporate bond defaults from 1995 to 2020 using hand-collected data from hard-copy publications in Korea. Using an under-sampling method, we construct default prediction models based on machine learning models as well as a logistic model. The empirical results show that the random forest model outperforms the others. However, regardless of the models used, model performance in financial crisis periods is significantly worse than it is in non-crisis periods. This finding suggests the need for additional information to improve model performance during crises when the default prediction is the most relevant. Furthermore, the dominant predictor of defaults before the global financial crisis was the debt ratio, while subsequently, the coverage ratio has become the most important predictor.</p>\",\"PeriodicalId\":8570,\"journal\":{\"name\":\"Asia-Pacific Journal of Financial Studies\",\"volume\":\"53 2\",\"pages\":\"238-276\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ajfs.12470\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Financial Studies\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ajfs.12470\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Financial Studies","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ajfs.12470","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们利用从韩国硬拷贝出版物中手工收集的数据,调查了 1995 年至 2020 年的公司债券违约情况。我们使用抽样不足法,构建了基于机器学习模型和逻辑模型的违约预测模型。实证结果表明,随机森林模型优于其他模型。然而,无论使用哪种模型,金融危机时期的模型性能都明显低于非危机时期。这一结果表明,在危机期间,当违约预测最为相关时,需要额外的信息来提高模型性能。此外,在全球金融危机之前,违约的主要预测指标是负债率,而在危机之后,覆盖率已成为最重要的预测指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Understanding Corporate Bond Defaults in Korea Using Machine Learning Models*

Understanding Corporate Bond Defaults in Korea Using Machine Learning Models*

We investigate corporate bond defaults from 1995 to 2020 using hand-collected data from hard-copy publications in Korea. Using an under-sampling method, we construct default prediction models based on machine learning models as well as a logistic model. The empirical results show that the random forest model outperforms the others. However, regardless of the models used, model performance in financial crisis periods is significantly worse than it is in non-crisis periods. This finding suggests the need for additional information to improve model performance during crises when the default prediction is the most relevant. Furthermore, the dominant predictor of defaults before the global financial crisis was the debt ratio, while subsequently, the coverage ratio has become the most important predictor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
20.00%
发文量
36
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信