{"title":"Graph4IUR:利用语义图重写不完整语句","authors":"Zipeng Gao, Jinke Wang, Tong Xu, Zhefeng Wang, Yu Yang, Jia Su, Enhong Chen","doi":"10.1145/3653301","DOIUrl":null,"url":null,"abstract":"<p>Utterance rewriting aims to identify and supply the omitted information in human conversation, which further enables the downstream task to understand conversations more comprehensively. Recently, sequence edit methods, which leverage the overlap between two sentences, have been widely applied to narrow the search space confronted by the previous linear generation methods. However, these methods ignore the relationship between linguistic elements in the conversation, which reflects how the knowledge and thoughts are organized in human communication. In this case, although most of the content in rewritten sentences can be found in the context, we found that some connecting words expressing relationships are often missing, which results in the out-of-context problem for the previous sentence edit method. To that end, in this paper, we propose a new semantic Graph-based Incomplete Utterance Rewriting (Graph4IUR) framework, which takes the semantic graph to depict the relationship between linguistic elements and captures out-of-context words. Specifically, we adopt the Abstract Meaning Representation (AMR) [4] graph as the basic sentence-to-graph method to depict the dialogue from the graph perspective, which could well represent the high-level semantics relationships of sentences. Along this line, we further adapt the sentence editing models to rewrite without changing the sentence architecture, which brings a restriction to exploring the overlap part of the current and rewritten sentences in the IUR task. Extensive experimental results indicate that our Graph4IUR framework can effectively alleviate the out-of-context problem and improve the performance of the previous edit-based methods in the IUR task.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":"14 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph4IUR: Incomplete Utterance Rewriting with Semantic Graph\",\"authors\":\"Zipeng Gao, Jinke Wang, Tong Xu, Zhefeng Wang, Yu Yang, Jia Su, Enhong Chen\",\"doi\":\"10.1145/3653301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Utterance rewriting aims to identify and supply the omitted information in human conversation, which further enables the downstream task to understand conversations more comprehensively. Recently, sequence edit methods, which leverage the overlap between two sentences, have been widely applied to narrow the search space confronted by the previous linear generation methods. However, these methods ignore the relationship between linguistic elements in the conversation, which reflects how the knowledge and thoughts are organized in human communication. In this case, although most of the content in rewritten sentences can be found in the context, we found that some connecting words expressing relationships are often missing, which results in the out-of-context problem for the previous sentence edit method. To that end, in this paper, we propose a new semantic Graph-based Incomplete Utterance Rewriting (Graph4IUR) framework, which takes the semantic graph to depict the relationship between linguistic elements and captures out-of-context words. Specifically, we adopt the Abstract Meaning Representation (AMR) [4] graph as the basic sentence-to-graph method to depict the dialogue from the graph perspective, which could well represent the high-level semantics relationships of sentences. Along this line, we further adapt the sentence editing models to rewrite without changing the sentence architecture, which brings a restriction to exploring the overlap part of the current and rewritten sentences in the IUR task. Extensive experimental results indicate that our Graph4IUR framework can effectively alleviate the out-of-context problem and improve the performance of the previous edit-based methods in the IUR task.</p>\",\"PeriodicalId\":54312,\"journal\":{\"name\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3653301\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3653301","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Graph4IUR: Incomplete Utterance Rewriting with Semantic Graph
Utterance rewriting aims to identify and supply the omitted information in human conversation, which further enables the downstream task to understand conversations more comprehensively. Recently, sequence edit methods, which leverage the overlap between two sentences, have been widely applied to narrow the search space confronted by the previous linear generation methods. However, these methods ignore the relationship between linguistic elements in the conversation, which reflects how the knowledge and thoughts are organized in human communication. In this case, although most of the content in rewritten sentences can be found in the context, we found that some connecting words expressing relationships are often missing, which results in the out-of-context problem for the previous sentence edit method. To that end, in this paper, we propose a new semantic Graph-based Incomplete Utterance Rewriting (Graph4IUR) framework, which takes the semantic graph to depict the relationship between linguistic elements and captures out-of-context words. Specifically, we adopt the Abstract Meaning Representation (AMR) [4] graph as the basic sentence-to-graph method to depict the dialogue from the graph perspective, which could well represent the high-level semantics relationships of sentences. Along this line, we further adapt the sentence editing models to rewrite without changing the sentence architecture, which brings a restriction to exploring the overlap part of the current and rewritten sentences in the IUR task. Extensive experimental results indicate that our Graph4IUR framework can effectively alleviate the out-of-context problem and improve the performance of the previous edit-based methods in the IUR task.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.