从克雷洛夫复杂性看自相关函数的普遍假设

Ren Zhang, Hui Zhai
{"title":"从克雷洛夫复杂性看自相关函数的普遍假设","authors":"Ren Zhang, Hui Zhai","doi":"10.1007/s44214-024-00054-4","DOIUrl":null,"url":null,"abstract":"<p>In a quantum many-body system, autocorrelation functions can determine linear responses nearby equilibrium and quantum dynamics far from equilibrium. In this letter, we bring out the connection between the operator complexity and the autocorrelation function. In particular, we focus on a particular kind of operator complexity called the Krylov complexity. We find that a set of Lanczos coefficients <span>\\(\\{b_{n}\\}\\)</span> computed for determining the Krylov complexity can reveal the universal behaviors of autocorrelations, which are otherwise impossible. When the time axis is scaled by <span>\\(b_{1}\\)</span>, different autocorrelation functions obey a universal function form at short time. We further propose a characteristic parameter deduced from <span>\\(\\{b_{n}\\}\\)</span> that can largely determine the behavior of autocorrelations at the intermediate time. This parameter can also largely determine whether the autocorrelation function oscillates or monotonically decays in time. We present numerical evidences and physical intuitions to support these universal hypotheses of autocorrelations. We emphasize that these universal behaviors are held across different operators and different physical systems.</p>","PeriodicalId":501227,"journal":{"name":"Quantum Frontiers","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal hypothesis of autocorrelation function from Krylov complexity\",\"authors\":\"Ren Zhang, Hui Zhai\",\"doi\":\"10.1007/s44214-024-00054-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a quantum many-body system, autocorrelation functions can determine linear responses nearby equilibrium and quantum dynamics far from equilibrium. In this letter, we bring out the connection between the operator complexity and the autocorrelation function. In particular, we focus on a particular kind of operator complexity called the Krylov complexity. We find that a set of Lanczos coefficients <span>\\\\(\\\\{b_{n}\\\\}\\\\)</span> computed for determining the Krylov complexity can reveal the universal behaviors of autocorrelations, which are otherwise impossible. When the time axis is scaled by <span>\\\\(b_{1}\\\\)</span>, different autocorrelation functions obey a universal function form at short time. We further propose a characteristic parameter deduced from <span>\\\\(\\\\{b_{n}\\\\}\\\\)</span> that can largely determine the behavior of autocorrelations at the intermediate time. This parameter can also largely determine whether the autocorrelation function oscillates or monotonically decays in time. We present numerical evidences and physical intuitions to support these universal hypotheses of autocorrelations. We emphasize that these universal behaviors are held across different operators and different physical systems.</p>\",\"PeriodicalId\":501227,\"journal\":{\"name\":\"Quantum Frontiers\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44214-024-00054-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44214-024-00054-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在量子多体系统中,自相关函数可以决定平衡附近的线性响应和远离平衡的量子动力学。在这封信中,我们提出了算子复杂性与自相关函数之间的联系。我们尤其关注一种特殊的算子复杂性,即克雷洛夫复杂性。我们发现,为确定克雷洛夫复杂度而计算的一组 Lanczos 系数 \(\{b_{n}\}\)可以揭示自相关函数的普遍行为,而这在其他情况下是不可能的。当时间轴被 \(b_{1}\)缩放时,不同的自相关函数在短时间内服从一个通用的函数形式。我们进一步提出了一个由 \(\{b_{n}\})推导出的特征参数,它可以在很大程度上决定自相关函数在中间时间的行为。这个参数还能在很大程度上决定自相关函数在时间上是振荡还是单调衰减。我们提出了数字证据和物理直觉来支持自相关性的这些普遍假设。我们强调,这些普遍行为适用于不同的算子和不同的物理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Universal hypothesis of autocorrelation function from Krylov complexity

Universal hypothesis of autocorrelation function from Krylov complexity

In a quantum many-body system, autocorrelation functions can determine linear responses nearby equilibrium and quantum dynamics far from equilibrium. In this letter, we bring out the connection between the operator complexity and the autocorrelation function. In particular, we focus on a particular kind of operator complexity called the Krylov complexity. We find that a set of Lanczos coefficients \(\{b_{n}\}\) computed for determining the Krylov complexity can reveal the universal behaviors of autocorrelations, which are otherwise impossible. When the time axis is scaled by \(b_{1}\), different autocorrelation functions obey a universal function form at short time. We further propose a characteristic parameter deduced from \(\{b_{n}\}\) that can largely determine the behavior of autocorrelations at the intermediate time. This parameter can also largely determine whether the autocorrelation function oscillates or monotonically decays in time. We present numerical evidences and physical intuitions to support these universal hypotheses of autocorrelations. We emphasize that these universal behaviors are held across different operators and different physical systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信