{"title":"对具有广义核的二次热方程复杂系统的新贡献:全局解决方案","authors":"Sarah Otsmane, Abdelaziz Mennouni","doi":"10.1007/s00605-024-01955-1","DOIUrl":null,"url":null,"abstract":"<p>In this work, we propose new contributions to a complex system of quadratic heat equations with a generalized kernel of the form: <span>\\(\\partial _t z=\\mathfrak {L}\\,z+ \\widetilde{z}^{2},\\;\\partial _t \\widetilde{z}=\\mathfrak {L}\\,\\widetilde{z}+ z^2,\\;t>0,\\)</span> with initial conditions <span>\\(z_{0}=u_0+v_0,\\;\\widetilde{z}_{0}=\\widetilde{u}_0+\\widetilde{v}_0\\)</span>, and <span>\\(\\mathfrak {L}\\)</span> is a linear operator with <span>\\(e^{t\\mathcal {L}}\\)</span> its semigroup having a generalized heat kernel <i>G</i> satisfying in particular <span>\\(G(t,x)= t^{-\\frac{N}{d}} G(1,xt^{-1/d}),\\,d>0,\\, t>0\\)</span> and <span>\\(x\\in \\mathbb {R}^N.\\)</span> Under conditions on the parameters <span>\\(\\sigma _{1},\\,\\widetilde{\\sigma }_{1},\\,\\rho _{1},\\,\\)</span> and <span>\\(\\widetilde{\\rho _{1}}\\)</span> we show results on global-in time solution for small data <span>\\(u_{0}(x)\\sim c|x|^{-d\\sigma _{1}},\\,v_{0}(x)\\sim c|x|^{-d\\rho _{1}},\\,\\widetilde{u}_{0}(x)\\sim c|x|^{-d\\widetilde{\\sigma }_{1}}\\)</span> and <span>\\(\\widetilde{v}_{0}(x)\\sim c|x|^{-d\\widetilde{\\rho }_{1}}\\)</span> as <span>\\(|x|\\rightarrow \\infty \\)</span>, ( |<i>c</i>| is sufficiently small ). We investigate the global existence of solutions to the given system.\n</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New contributions to a complex system of quadratic heat equations with a generalized kernels: global solutions\",\"authors\":\"Sarah Otsmane, Abdelaziz Mennouni\",\"doi\":\"10.1007/s00605-024-01955-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we propose new contributions to a complex system of quadratic heat equations with a generalized kernel of the form: <span>\\\\(\\\\partial _t z=\\\\mathfrak {L}\\\\,z+ \\\\widetilde{z}^{2},\\\\;\\\\partial _t \\\\widetilde{z}=\\\\mathfrak {L}\\\\,\\\\widetilde{z}+ z^2,\\\\;t>0,\\\\)</span> with initial conditions <span>\\\\(z_{0}=u_0+v_0,\\\\;\\\\widetilde{z}_{0}=\\\\widetilde{u}_0+\\\\widetilde{v}_0\\\\)</span>, and <span>\\\\(\\\\mathfrak {L}\\\\)</span> is a linear operator with <span>\\\\(e^{t\\\\mathcal {L}}\\\\)</span> its semigroup having a generalized heat kernel <i>G</i> satisfying in particular <span>\\\\(G(t,x)= t^{-\\\\frac{N}{d}} G(1,xt^{-1/d}),\\\\,d>0,\\\\, t>0\\\\)</span> and <span>\\\\(x\\\\in \\\\mathbb {R}^N.\\\\)</span> Under conditions on the parameters <span>\\\\(\\\\sigma _{1},\\\\,\\\\widetilde{\\\\sigma }_{1},\\\\,\\\\rho _{1},\\\\,\\\\)</span> and <span>\\\\(\\\\widetilde{\\\\rho _{1}}\\\\)</span> we show results on global-in time solution for small data <span>\\\\(u_{0}(x)\\\\sim c|x|^{-d\\\\sigma _{1}},\\\\,v_{0}(x)\\\\sim c|x|^{-d\\\\rho _{1}},\\\\,\\\\widetilde{u}_{0}(x)\\\\sim c|x|^{-d\\\\widetilde{\\\\sigma }_{1}}\\\\)</span> and <span>\\\\(\\\\widetilde{v}_{0}(x)\\\\sim c|x|^{-d\\\\widetilde{\\\\rho }_{1}}\\\\)</span> as <span>\\\\(|x|\\\\rightarrow \\\\infty \\\\)</span>, ( |<i>c</i>| is sufficiently small ). We investigate the global existence of solutions to the given system.\\n</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-024-01955-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01955-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New contributions to a complex system of quadratic heat equations with a generalized kernels: global solutions
In this work, we propose new contributions to a complex system of quadratic heat equations with a generalized kernel of the form: \(\partial _t z=\mathfrak {L}\,z+ \widetilde{z}^{2},\;\partial _t \widetilde{z}=\mathfrak {L}\,\widetilde{z}+ z^2,\;t>0,\) with initial conditions \(z_{0}=u_0+v_0,\;\widetilde{z}_{0}=\widetilde{u}_0+\widetilde{v}_0\), and \(\mathfrak {L}\) is a linear operator with \(e^{t\mathcal {L}}\) its semigroup having a generalized heat kernel G satisfying in particular \(G(t,x)= t^{-\frac{N}{d}} G(1,xt^{-1/d}),\,d>0,\, t>0\) and \(x\in \mathbb {R}^N.\) Under conditions on the parameters \(\sigma _{1},\,\widetilde{\sigma }_{1},\,\rho _{1},\,\) and \(\widetilde{\rho _{1}}\) we show results on global-in time solution for small data \(u_{0}(x)\sim c|x|^{-d\sigma _{1}},\,v_{0}(x)\sim c|x|^{-d\rho _{1}},\,\widetilde{u}_{0}(x)\sim c|x|^{-d\widetilde{\sigma }_{1}}\) and \(\widetilde{v}_{0}(x)\sim c|x|^{-d\widetilde{\rho }_{1}}\) as \(|x|\rightarrow \infty \), ( |c| is sufficiently small ). We investigate the global existence of solutions to the given system.