b 系列方程奇异解的稳定性

Shou-Jun Huang, Li-Fan Wu
{"title":"b 系列方程奇异解的稳定性","authors":"Shou-Jun Huang, Li-Fan Wu","doi":"10.1007/s00605-024-01964-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we first construct some explicit solutions to the <i>b</i>-family of equations, which will become unbounded in a finite time. Then, we investigate the asymptotic stability of the aforementioned singular solutions of the <i>b</i>-family of equations in the Sobolev space <span>\\(H^s\\)</span> with <span>\\(s&gt;\\frac{7}{2}\\)</span>. It is also interesting to point out that this stability highly depends on the values of parameter <i>b</i>, that is, <span>\\(b\\in (-1,2]\\)</span>. The proof is based on the detailed analysis on the estimates of the perturbed solutions and the properties of the corresponding linear operators.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of singular solutions to the b-family of equations\",\"authors\":\"Shou-Jun Huang, Li-Fan Wu\",\"doi\":\"10.1007/s00605-024-01964-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we first construct some explicit solutions to the <i>b</i>-family of equations, which will become unbounded in a finite time. Then, we investigate the asymptotic stability of the aforementioned singular solutions of the <i>b</i>-family of equations in the Sobolev space <span>\\\\(H^s\\\\)</span> with <span>\\\\(s&gt;\\\\frac{7}{2}\\\\)</span>. It is also interesting to point out that this stability highly depends on the values of parameter <i>b</i>, that is, <span>\\\\(b\\\\in (-1,2]\\\\)</span>. The proof is based on the detailed analysis on the estimates of the perturbed solutions and the properties of the corresponding linear operators.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-024-01964-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01964-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先构建了 b-family方程的一些显式解,这些解将在有限时间内变得无界。然后,我们研究了上述 b 族方程奇异解在 Sobolev 空间 \(H^s\) 中的(s>\frac{7}{2}\)渐近稳定性。值得注意的是,这种稳定性在很大程度上取决于参数 b 的值,即 \(b\in (-1,2]\).证明基于对扰动解的估计和相应线性算子性质的详细分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of singular solutions to the b-family of equations

In this paper, we first construct some explicit solutions to the b-family of equations, which will become unbounded in a finite time. Then, we investigate the asymptotic stability of the aforementioned singular solutions of the b-family of equations in the Sobolev space \(H^s\) with \(s>\frac{7}{2}\). It is also interesting to point out that this stability highly depends on the values of parameter b, that is, \(b\in (-1,2]\). The proof is based on the detailed analysis on the estimates of the perturbed solutions and the properties of the corresponding linear operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信