平稳动力学中的最小扩展

{"title":"平稳动力学中的最小扩展","authors":"","doi":"10.1007/s00605-024-01970-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>A classical result of Fathi and Herman from 1977 states that a smooth compact connected manifold without boundary admitting a locally free action of a 1-torus, respectively, an almost free action of a 2-torus, admits a minimal diffeomorphism, respectively, a minimal flow. In the first part of our paper we study the existence of locally free and almost free actions of tori on homogeneous spaces of compact connected Lie groups, thus providing new examples of spaces admitting minimal diffeomorphisms or flows. In the second part we combine the ideas of Fathi and Herman with our recent ideas to study the existence of minimal skew products over certain minimal flows with general connected Lie groups as acting groups. Our results apply to so called flows with free cycles. In the last part of our work we study the existence of free cycles in homogeneous flows.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal extensions in smooth dynamics\",\"authors\":\"\",\"doi\":\"10.1007/s00605-024-01970-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>A classical result of Fathi and Herman from 1977 states that a smooth compact connected manifold without boundary admitting a locally free action of a 1-torus, respectively, an almost free action of a 2-torus, admits a minimal diffeomorphism, respectively, a minimal flow. In the first part of our paper we study the existence of locally free and almost free actions of tori on homogeneous spaces of compact connected Lie groups, thus providing new examples of spaces admitting minimal diffeomorphisms or flows. In the second part we combine the ideas of Fathi and Herman with our recent ideas to study the existence of minimal skew products over certain minimal flows with general connected Lie groups as acting groups. Our results apply to so called flows with free cycles. In the last part of our work we study the existence of free cycles in homogeneous flows.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-024-01970-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01970-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 Fathi 和 Herman 1977 年的一个经典结果指出,一个光滑的无边界紧凑连通流形,如果接纳一个 1 次旋的局部自由作用,或一个 2 次旋的几乎自由作用,就会接纳一个最小的衍射,或一个最小的流。在论文的第一部分,我们研究了在紧凑连通李群的同质空间上存在的局部自由和几乎自由的环作用,从而提供了容许极小差分或极小流的空间的新例子。在第二部分中,我们将法蒂和赫尔曼的观点与我们最近的观点相结合,研究了以一般连通李群为作用群的某些极小流上的极小斜积的存在性。我们的结果适用于所谓的自由循环流。在工作的最后一部分,我们研究了同质流中自由循环的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal extensions in smooth dynamics

Abstract

A classical result of Fathi and Herman from 1977 states that a smooth compact connected manifold without boundary admitting a locally free action of a 1-torus, respectively, an almost free action of a 2-torus, admits a minimal diffeomorphism, respectively, a minimal flow. In the first part of our paper we study the existence of locally free and almost free actions of tori on homogeneous spaces of compact connected Lie groups, thus providing new examples of spaces admitting minimal diffeomorphisms or flows. In the second part we combine the ideas of Fathi and Herman with our recent ideas to study the existence of minimal skew products over certain minimal flows with general connected Lie groups as acting groups. Our results apply to so called flows with free cycles. In the last part of our work we study the existence of free cycles in homogeneous flows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信