在$$H^{s,p}(\mathbb {R})$$中同时耗散和分散的修正卡马萨-霍尔姆方程的沸腾、全局存在性和传播速度

{"title":"在$$H^{s,p}(\\mathbb {R})$$中同时耗散和分散的修正卡马萨-霍尔姆方程的沸腾、全局存在性和传播速度","authors":"","doi":"10.1007/s00605-024-01966-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this essay, we investigate the blow-up scenario, global solution and propagation speed for a modified Camassa–Holm (MCH) equation both dissipation and dispersion in Sobolev space <span> <span>\\(H^{s,p} (\\mathbb {R})\\)</span> </span>, <span> <span>\\(s\\ge 1\\)</span> </span>, <span> <span>\\(p\\in (1,\\infty )\\)</span> </span>. First of all, by the mathematical induction of index <em>s</em>, we establish the precise blow-up criteria, which extends the result obtained by Gui et al. in article (Comm Math Phys 319: 731–759, 2013). Secondly, we derive the global existence of the strong solution of MCH equation both dissipation and dispersion. Eventually, the propagation speed of the equation is studied when the initial data are compactly supported.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"143 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blow-up, global existence and propagation speed for a modified Camassa–Holm equation both dissipation and dispersion in $$H^{s,p}(\\\\mathbb {R})$$\",\"authors\":\"\",\"doi\":\"10.1007/s00605-024-01966-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this essay, we investigate the blow-up scenario, global solution and propagation speed for a modified Camassa–Holm (MCH) equation both dissipation and dispersion in Sobolev space <span> <span>\\\\(H^{s,p} (\\\\mathbb {R})\\\\)</span> </span>, <span> <span>\\\\(s\\\\ge 1\\\\)</span> </span>, <span> <span>\\\\(p\\\\in (1,\\\\infty )\\\\)</span> </span>. First of all, by the mathematical induction of index <em>s</em>, we establish the precise blow-up criteria, which extends the result obtained by Gui et al. in article (Comm Math Phys 319: 731–759, 2013). Secondly, we derive the global existence of the strong solution of MCH equation both dissipation and dispersion. Eventually, the propagation speed of the equation is studied when the initial data are compactly supported.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-024-01966-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01966-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 在这篇文章中,我们研究了修正的卡马萨-霍尔姆(MCH)方程在Sobolev空间(H^{s,p} (\mathbb {R})\) 中既耗散又分散的炸毁情形、全局解和传播速度。, (s\ge 1\ ) , (p\in (1,\infty )\ ) 。首先,通过索引 s 的数学归纳,我们建立了精确的炸毁标准,这扩展了桂等人在文章(Comm Math Phys 319: 731-759, 2013)中得到的结果。其次,我们推导出了 MCH 方程耗散和离散强解的全局存在性。最后,研究了方程在初始数据紧凑支撑时的传播速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blow-up, global existence and propagation speed for a modified Camassa–Holm equation both dissipation and dispersion in $$H^{s,p}(\mathbb {R})$$

Abstract

In this essay, we investigate the blow-up scenario, global solution and propagation speed for a modified Camassa–Holm (MCH) equation both dissipation and dispersion in Sobolev space \(H^{s,p} (\mathbb {R})\) , \(s\ge 1\) , \(p\in (1,\infty )\) . First of all, by the mathematical induction of index s, we establish the precise blow-up criteria, which extends the result obtained by Gui et al. in article (Comm Math Phys 319: 731–759, 2013). Secondly, we derive the global existence of the strong solution of MCH equation both dissipation and dispersion. Eventually, the propagation speed of the equation is studied when the initial data are compactly supported.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信