可测量的光谱分解

Bomi Shin
{"title":"可测量的光谱分解","authors":"Bomi Shin","doi":"10.1007/s00605-024-01961-3","DOIUrl":null,"url":null,"abstract":"<p>introduce the spectral decomposition property for measures and prove that a homeomorphism has the spectral decomposition property if and only if every Borel probability measure has the property too. Furthermore, we show that all shadowable measures for expansive homeomorphisms have the spectral decomposition property. Additionally, we provide illustrative examples relevant to these results.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A measurable spectral decomposition\",\"authors\":\"Bomi Shin\",\"doi\":\"10.1007/s00605-024-01961-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>introduce the spectral decomposition property for measures and prove that a homeomorphism has the spectral decomposition property if and only if every Borel probability measure has the property too. Furthermore, we show that all shadowable measures for expansive homeomorphisms have the spectral decomposition property. Additionally, we provide illustrative examples relevant to these results.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-024-01961-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01961-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引入度量的谱分解性质,并证明当且仅当每个伯尔概率度量也具有谱分解性质时,同态才具有谱分解性质。此外,我们还证明了膨胀同构的所有可影度量都具有谱分解性质。此外,我们还提供了与这些结果相关的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A measurable spectral decomposition

introduce the spectral decomposition property for measures and prove that a homeomorphism has the spectral decomposition property if and only if every Borel probability measure has the property too. Furthermore, we show that all shadowable measures for expansive homeomorphisms have the spectral decomposition property. Additionally, we provide illustrative examples relevant to these results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信