在 $$\mathbb {R}^n$ 的紧凑扩展上进行 Gabor 变换的哈代不确定性原理

Kais Smaoui
{"title":"在 $$\\mathbb {R}^n$ 的紧凑扩展上进行 Gabor 变换的哈代不确定性原理","authors":"Kais Smaoui","doi":"10.1007/s00605-024-01960-4","DOIUrl":null,"url":null,"abstract":"<p>We prove in this paper a generalization of Hardy’s theorem for Gabor transform in the setup of the semidirect product <span>\\(\\mathbb {R}^n\\rtimes K\\)</span>, where <i>K</i> is a compact subgroup of automorphisms of <span>\\(\\mathbb {R}^n\\)</span>. We also solve the sharpness problem and thus obtain a complete analogue of Hardy’s theorem for Gabor transform. The representation theory and Plancherel formula are fundamental tools in the proof of our results.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardy’s uncertainty principle for Gabor transform on compact extensions of $$\\\\mathbb {R}^n$$\",\"authors\":\"Kais Smaoui\",\"doi\":\"10.1007/s00605-024-01960-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove in this paper a generalization of Hardy’s theorem for Gabor transform in the setup of the semidirect product <span>\\\\(\\\\mathbb {R}^n\\\\rtimes K\\\\)</span>, where <i>K</i> is a compact subgroup of automorphisms of <span>\\\\(\\\\mathbb {R}^n\\\\)</span>. We also solve the sharpness problem and thus obtain a complete analogue of Hardy’s theorem for Gabor transform. The representation theory and Plancherel formula are fundamental tools in the proof of our results.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-024-01960-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01960-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了哈代定理在半间接积 \(\mathbb {R}^n\rtimes K\) 的设置中对 Gabor 变换的概括,其中 K 是 \(\mathbb {R}^n\) 的一个紧凑的自动子群。我们还解决了尖锐性问题,从而得到了哈代定理关于 Gabor 变换的完整类比。表示理论和 Plancherel 公式是证明我们结果的基本工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardy’s uncertainty principle for Gabor transform on compact extensions of $$\mathbb {R}^n$$

We prove in this paper a generalization of Hardy’s theorem for Gabor transform in the setup of the semidirect product \(\mathbb {R}^n\rtimes K\), where K is a compact subgroup of automorphisms of \(\mathbb {R}^n\). We also solve the sharpness problem and thus obtain a complete analogue of Hardy’s theorem for Gabor transform. The representation theory and Plancherel formula are fundamental tools in the proof of our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信