{"title":"方程 $$-\\varphi ''+\\varphi -\\varphi ^{k}=0$$ 的周期图的单调性","authors":"Giovana Alves, Fábio Natali","doi":"10.1007/s00605-024-01969-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish the monotonicity of the period map in terms of the energy levels for certain periodic solutions of the equation <span>\\(-\\varphi ''+\\varphi -\\varphi ^{k}=0\\)</span>, where <span>\\(k>1\\)</span> is a real number. We present a new approach to demonstrate this property, utilizing spectral information of the corresponding linearized operator around the periodic solution and tools related to Floquet theory.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"162 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonicity of the period map for the equation $$-\\\\varphi ''+\\\\varphi -\\\\varphi ^{k}=0$$\",\"authors\":\"Giovana Alves, Fábio Natali\",\"doi\":\"10.1007/s00605-024-01969-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we establish the monotonicity of the period map in terms of the energy levels for certain periodic solutions of the equation <span>\\\\(-\\\\varphi ''+\\\\varphi -\\\\varphi ^{k}=0\\\\)</span>, where <span>\\\\(k>1\\\\)</span> is a real number. We present a new approach to demonstrate this property, utilizing spectral information of the corresponding linearized operator around the periodic solution and tools related to Floquet theory.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"162 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-024-01969-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01969-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monotonicity of the period map for the equation $$-\varphi ''+\varphi -\varphi ^{k}=0$$
In this paper, we establish the monotonicity of the period map in terms of the energy levels for certain periodic solutions of the equation \(-\varphi ''+\varphi -\varphi ^{k}=0\), where \(k>1\) is a real number. We present a new approach to demonstrate this property, utilizing spectral information of the corresponding linearized operator around the periodic solution and tools related to Floquet theory.