方程 $$-\varphi ''+\varphi -\varphi ^{k}=0$$ 的周期图的单调性

Giovana Alves, Fábio Natali
{"title":"方程 $$-\\varphi ''+\\varphi -\\varphi ^{k}=0$$ 的周期图的单调性","authors":"Giovana Alves, Fábio Natali","doi":"10.1007/s00605-024-01969-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish the monotonicity of the period map in terms of the energy levels for certain periodic solutions of the equation <span>\\(-\\varphi ''+\\varphi -\\varphi ^{k}=0\\)</span>, where <span>\\(k&gt;1\\)</span> is a real number. We present a new approach to demonstrate this property, utilizing spectral information of the corresponding linearized operator around the periodic solution and tools related to Floquet theory.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"162 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonicity of the period map for the equation $$-\\\\varphi ''+\\\\varphi -\\\\varphi ^{k}=0$$\",\"authors\":\"Giovana Alves, Fábio Natali\",\"doi\":\"10.1007/s00605-024-01969-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we establish the monotonicity of the period map in terms of the energy levels for certain periodic solutions of the equation <span>\\\\(-\\\\varphi ''+\\\\varphi -\\\\varphi ^{k}=0\\\\)</span>, where <span>\\\\(k&gt;1\\\\)</span> is a real number. We present a new approach to demonstrate this property, utilizing spectral information of the corresponding linearized operator around the periodic solution and tools related to Floquet theory.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"162 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-024-01969-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01969-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们针对方程 \(-\varphi ''+\varphi -\varphi ^{k}=0\)的某些周期解(其中 \(k>1\)是实数)的能级建立了周期图的单调性。我们提出了一种新方法,利用周期解周围相应线性化算子的谱信息以及与 Floquet 理论相关的工具来证明这一性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monotonicity of the period map for the equation $$-\varphi ''+\varphi -\varphi ^{k}=0$$

Monotonicity of the period map for the equation $$-\varphi ''+\varphi -\varphi ^{k}=0$$

In this paper, we establish the monotonicity of the period map in terms of the energy levels for certain periodic solutions of the equation \(-\varphi ''+\varphi -\varphi ^{k}=0\), where \(k>1\) is a real number. We present a new approach to demonstrate this property, utilizing spectral information of the corresponding linearized operator around the periodic solution and tools related to Floquet theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信