Peng Yu;Ning Tan;Zhaohui Zhong;Cong Hu;Binbin Qiu;Changsheng Li
{"title":"受联合约束的冗余机械手的统一避障和跟踪控制:数据驱动的新方案","authors":"Peng Yu;Ning Tan;Zhaohui Zhong;Cong Hu;Binbin Qiu;Changsheng Li","doi":"10.1109/TCDS.2024.3387575","DOIUrl":null,"url":null,"abstract":"In modern manufacturing, redundant manipulators have been widely deployed. Performing a task often requires the manipulator to follow specific trajectories while avoiding surrounding obstacles. Different from most existing obstacle-avoidance (OA) schemes that rely on the kinematic model of redundant manipulators, in this article, we propose a new data-driven obstacle-avoidance (DDOA) scheme for the collision-free tracking control of redundant manipulators. The OA task is formulated as a quadratic programming problem with inequality constraints. Then, the objectives of obstacle avoidance and tracking control are unitedly transformed into a computation problem of solving a system including three recurrent neural networks. With the Jacobian estimators designed based on zeroing neural networks, the manipulator Jacobian and critical-point Jacobian can be estimated in a data-driven way without knowing the kinematic model. Finally, the effectiveness of the proposed scheme is validated through extensive simulations and experiments.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 5","pages":"1861-1871"},"PeriodicalIF":5.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unifying Obstacle Avoidance and Tracking Control of Redundant Manipulators Subject to Joint Constraints: A New Data-Driven Scheme\",\"authors\":\"Peng Yu;Ning Tan;Zhaohui Zhong;Cong Hu;Binbin Qiu;Changsheng Li\",\"doi\":\"10.1109/TCDS.2024.3387575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern manufacturing, redundant manipulators have been widely deployed. Performing a task often requires the manipulator to follow specific trajectories while avoiding surrounding obstacles. Different from most existing obstacle-avoidance (OA) schemes that rely on the kinematic model of redundant manipulators, in this article, we propose a new data-driven obstacle-avoidance (DDOA) scheme for the collision-free tracking control of redundant manipulators. The OA task is formulated as a quadratic programming problem with inequality constraints. Then, the objectives of obstacle avoidance and tracking control are unitedly transformed into a computation problem of solving a system including three recurrent neural networks. With the Jacobian estimators designed based on zeroing neural networks, the manipulator Jacobian and critical-point Jacobian can be estimated in a data-driven way without knowing the kinematic model. Finally, the effectiveness of the proposed scheme is validated through extensive simulations and experiments.\",\"PeriodicalId\":54300,\"journal\":{\"name\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"volume\":\"16 5\",\"pages\":\"1861-1871\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10497180/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10497180/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Unifying Obstacle Avoidance and Tracking Control of Redundant Manipulators Subject to Joint Constraints: A New Data-Driven Scheme
In modern manufacturing, redundant manipulators have been widely deployed. Performing a task often requires the manipulator to follow specific trajectories while avoiding surrounding obstacles. Different from most existing obstacle-avoidance (OA) schemes that rely on the kinematic model of redundant manipulators, in this article, we propose a new data-driven obstacle-avoidance (DDOA) scheme for the collision-free tracking control of redundant manipulators. The OA task is formulated as a quadratic programming problem with inequality constraints. Then, the objectives of obstacle avoidance and tracking control are unitedly transformed into a computation problem of solving a system including three recurrent neural networks. With the Jacobian estimators designed based on zeroing neural networks, the manipulator Jacobian and critical-point Jacobian can be estimated in a data-driven way without knowing the kinematic model. Finally, the effectiveness of the proposed scheme is validated through extensive simulations and experiments.
期刊介绍:
The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.