{"title":"新颖的大蒜提取物植物载体制剂及其在大鼠体内的促智潜能:箱式贝肯设计的优化与开发","authors":"Varsha Mane, Suresh Killedar, Harinath More, Sameer Nadaf, Sachin Salunkhe, Harshal Tare","doi":"10.1155/2024/6644815","DOIUrl":null,"url":null,"abstract":"<i>Purpose</i>. The present study aimed to improve the aqueous solubility, permeability, bioavailability, and nootropic potential of standardized <i>Emblica officinalis</i> extract (EOE) by developing a novel phytosomal formulation. <i>Method</i>. <i>Emblica officinalis</i> extract-loaded phytosomes (EOPs) were prepared using solvent evaporation. The EOP was prepared at different molar ratios of extract and phospholipid. Herein, the effects of phospholipid extract ratio (A), temperature (B), and reaction time (C) were systematically investigated on entrapment efficiency using Box-Behnken design. <i>In vitro</i> and <i>in vivo</i> characterizations of the optimized formulation were performed. <i>Results</i>. Optimized EOP formulation (89.90 ± 0.24 <i>μ</i>g/ml) exhibited improved aqueous solubility than plain EOE (11.85 ± 0.25 <i>μ</i>g/ml). The optimized formulation’s particle size and Zeta potential were 198.4 ± 0.20 nm and −39.0 ± 0.40 mv. DSC and XRD studies confirmed the partial amorphization of EOE in phytosomes. Optimized formulation exhibited 69.82 ± 0.17% of EOE release at 12 h and followed zero-order release kinetics. Moreover, the phytosomal formulation of EOE exhibited its rationality with an improvement of bioavailability by 2.7 folds compared with pure EOE. Compared to EOE, EOP showed significantly (<span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 18.973 12.7178\" width=\"18.973pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.342,0)\"></path></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"22.555183800000002 -9.28833 26.436 12.7178\" width=\"26.436pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.605,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,28.845,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,31.809,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.049,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,44.289,0)\"></path></g></svg></span> lower escape and transfer latencies on both days in MWMT and EPMT, indicating more effective memory-enhancing activity. Furthermore, EOP-treated rats exhibited improved acetylcholine (Ach) levels than EOE. Brain tissue concentrations measured following EOP oral administration (1.06 ± 0.04 <i>μ</i>g/ml) were substantially greater (<span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 18.973 11.7782\" width=\"18.973pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.342,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"22.555183800000002 -8.34882 21.921 11.7782\" width=\"21.921pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.605,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,28.845,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,31.809,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.049,0)\"><use xlink:href=\"#g113-54\"></use></g></svg>)</span></span> than those following EOE (0.32 ± 0.07 <i>μ</i>g/ml). The brain dopamine and serotonin concentration were found to be higher (16.27 ± 1.209 and 43.28 ± 1.550 ng/ml) in the EOP-treated group as compared to the pure extract-treated group (10.40 ± 1.185 and 32.79 ± 1.738 ng/ml). <i>Conclusion</i>. Improvement of aqueous solubility, permeability, dissolution, bioavailability, and narrower particle size distribution could facilitate enhancement in the nootropic potential of EOE phytosomal formulation.","PeriodicalId":15348,"journal":{"name":"Journal of Chemistry","volume":"66 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Phytosomal Formulation of Emblica officinalis Extracts with Its In Vivo Nootropic Potential in Rats: Optimization and Development by Box-Behnken Design\",\"authors\":\"Varsha Mane, Suresh Killedar, Harinath More, Sameer Nadaf, Sachin Salunkhe, Harshal Tare\",\"doi\":\"10.1155/2024/6644815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<i>Purpose</i>. The present study aimed to improve the aqueous solubility, permeability, bioavailability, and nootropic potential of standardized <i>Emblica officinalis</i> extract (EOE) by developing a novel phytosomal formulation. <i>Method</i>. <i>Emblica officinalis</i> extract-loaded phytosomes (EOPs) were prepared using solvent evaporation. The EOP was prepared at different molar ratios of extract and phospholipid. Herein, the effects of phospholipid extract ratio (A), temperature (B), and reaction time (C) were systematically investigated on entrapment efficiency using Box-Behnken design. <i>In vitro</i> and <i>in vivo</i> characterizations of the optimized formulation were performed. <i>Results</i>. Optimized EOP formulation (89.90 ± 0.24 <i>μ</i>g/ml) exhibited improved aqueous solubility than plain EOE (11.85 ± 0.25 <i>μ</i>g/ml). The optimized formulation’s particle size and Zeta potential were 198.4 ± 0.20 nm and −39.0 ± 0.40 mv. DSC and XRD studies confirmed the partial amorphization of EOE in phytosomes. Optimized formulation exhibited 69.82 ± 0.17% of EOE release at 12 h and followed zero-order release kinetics. Moreover, the phytosomal formulation of EOE exhibited its rationality with an improvement of bioavailability by 2.7 folds compared with pure EOE. Compared to EOE, EOP showed significantly (<span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 18.973 12.7178\\\" width=\\\"18.973pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,11.342,0)\\\"></path></g></svg><span></span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"22.555183800000002 -9.28833 26.436 12.7178\\\" width=\\\"26.436pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,22.605,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,28.845,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,31.809,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,38.049,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,44.289,0)\\\"></path></g></svg></span> lower escape and transfer latencies on both days in MWMT and EPMT, indicating more effective memory-enhancing activity. Furthermore, EOP-treated rats exhibited improved acetylcholine (Ach) levels than EOE. Brain tissue concentrations measured following EOP oral administration (1.06 ± 0.04 <i>μ</i>g/ml) were substantially greater (<span><svg height=\\\"11.7782pt\\\" style=\\\"vertical-align:-3.42938pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.34882 18.973 11.7782\\\" width=\\\"18.973pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-113\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.342,0)\\\"><use xlink:href=\\\"#g117-91\\\"></use></g></svg><span></span><span><svg height=\\\"11.7782pt\\\" style=\\\"vertical-align:-3.42938pt\\\" version=\\\"1.1\\\" viewbox=\\\"22.555183800000002 -8.34882 21.921 11.7782\\\" width=\\\"21.921pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,22.605,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,28.845,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,31.809,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,38.049,0)\\\"><use xlink:href=\\\"#g113-54\\\"></use></g></svg>)</span></span> than those following EOE (0.32 ± 0.07 <i>μ</i>g/ml). The brain dopamine and serotonin concentration were found to be higher (16.27 ± 1.209 and 43.28 ± 1.550 ng/ml) in the EOP-treated group as compared to the pure extract-treated group (10.40 ± 1.185 and 32.79 ± 1.738 ng/ml). <i>Conclusion</i>. Improvement of aqueous solubility, permeability, dissolution, bioavailability, and narrower particle size distribution could facilitate enhancement in the nootropic potential of EOE phytosomal formulation.\",\"PeriodicalId\":15348,\"journal\":{\"name\":\"Journal of Chemistry\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6644815\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2024/6644815","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Novel Phytosomal Formulation of Emblica officinalis Extracts with Its In Vivo Nootropic Potential in Rats: Optimization and Development by Box-Behnken Design
Purpose. The present study aimed to improve the aqueous solubility, permeability, bioavailability, and nootropic potential of standardized Emblica officinalis extract (EOE) by developing a novel phytosomal formulation. Method. Emblica officinalis extract-loaded phytosomes (EOPs) were prepared using solvent evaporation. The EOP was prepared at different molar ratios of extract and phospholipid. Herein, the effects of phospholipid extract ratio (A), temperature (B), and reaction time (C) were systematically investigated on entrapment efficiency using Box-Behnken design. In vitro and in vivo characterizations of the optimized formulation were performed. Results. Optimized EOP formulation (89.90 ± 0.24 μg/ml) exhibited improved aqueous solubility than plain EOE (11.85 ± 0.25 μg/ml). The optimized formulation’s particle size and Zeta potential were 198.4 ± 0.20 nm and −39.0 ± 0.40 mv. DSC and XRD studies confirmed the partial amorphization of EOE in phytosomes. Optimized formulation exhibited 69.82 ± 0.17% of EOE release at 12 h and followed zero-order release kinetics. Moreover, the phytosomal formulation of EOE exhibited its rationality with an improvement of bioavailability by 2.7 folds compared with pure EOE. Compared to EOE, EOP showed significantly ( lower escape and transfer latencies on both days in MWMT and EPMT, indicating more effective memory-enhancing activity. Furthermore, EOP-treated rats exhibited improved acetylcholine (Ach) levels than EOE. Brain tissue concentrations measured following EOP oral administration (1.06 ± 0.04 μg/ml) were substantially greater () than those following EOE (0.32 ± 0.07 μg/ml). The brain dopamine and serotonin concentration were found to be higher (16.27 ± 1.209 and 43.28 ± 1.550 ng/ml) in the EOP-treated group as compared to the pure extract-treated group (10.40 ± 1.185 and 32.79 ± 1.738 ng/ml). Conclusion. Improvement of aqueous solubility, permeability, dissolution, bioavailability, and narrower particle size distribution could facilitate enhancement in the nootropic potential of EOE phytosomal formulation.
期刊介绍:
Journal of Chemistry is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of chemistry.