雷达接收器的系统预报框架开发方法

IF 1.4 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES
Delanyo Kwame Bensah Kulevome, Hong Wang, Zian Zhao, Xuegang Wang
{"title":"雷达接收器的系统预报框架开发方法","authors":"Delanyo Kwame Bensah Kulevome, Hong Wang, Zian Zhao, Xuegang Wang","doi":"10.1117/1.jrs.18.027501","DOIUrl":null,"url":null,"abstract":"Radar receivers are vital components in modern radar systems, and their reliable operation is crucial for accurate target detection and tracking. However, degrading receiver components can lead to reduced gain, increased noise levels, and decreased probability of detection affecting the overall radar performance. We present an efficient real-time prognostic framework for a radar receiver. The effect of the performance degradation of critical devices on the radar receiver is analyzed. A prognostic framework is developed based on the relationship between device health and receiver performance. Subsequently, an improved prognostic model based on the integration of Weibull distribution and long short-term memory network is developed and trained to accurately estimate the remaining useful life (RUL) of the receiver. Integrating survival analysis and deep learning techniques offers a robust solution for accurate RUL estimation, which can significantly enhance maintenance strategies. The proposed framework facilitates transitioning from traditional reactive maintenance practices to a predictive maintenance approach, thereby reducing downtime and improving the overall availability of radar receivers.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic prognostics framework development approach for a radar receiver\",\"authors\":\"Delanyo Kwame Bensah Kulevome, Hong Wang, Zian Zhao, Xuegang Wang\",\"doi\":\"10.1117/1.jrs.18.027501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radar receivers are vital components in modern radar systems, and their reliable operation is crucial for accurate target detection and tracking. However, degrading receiver components can lead to reduced gain, increased noise levels, and decreased probability of detection affecting the overall radar performance. We present an efficient real-time prognostic framework for a radar receiver. The effect of the performance degradation of critical devices on the radar receiver is analyzed. A prognostic framework is developed based on the relationship between device health and receiver performance. Subsequently, an improved prognostic model based on the integration of Weibull distribution and long short-term memory network is developed and trained to accurately estimate the remaining useful life (RUL) of the receiver. Integrating survival analysis and deep learning techniques offers a robust solution for accurate RUL estimation, which can significantly enhance maintenance strategies. The proposed framework facilitates transitioning from traditional reactive maintenance practices to a predictive maintenance approach, thereby reducing downtime and improving the overall availability of radar receivers.\",\"PeriodicalId\":54879,\"journal\":{\"name\":\"Journal of Applied Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.18.027501\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.027501","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

雷达接收机是现代雷达系统的重要组件,其可靠运行对于精确探测和跟踪目标至关重要。然而,接收器组件的退化会导致增益降低、噪声水平增加和探测概率下降,从而影响雷达的整体性能。我们提出了一种高效的雷达接收器实时预报框架。分析了关键设备性能下降对雷达接收器的影响。根据设备健康状况与接收器性能之间的关系开发了一个预报框架。随后,基于 Weibull 分布和长短期记忆网络的集成,开发并训练了一个改进的预报模型,以准确估计接收机的剩余使用寿命(RUL)。将生存分析与深度学习技术相结合,为精确估算剩余使用寿命提供了一种稳健的解决方案,可显著增强维护策略。所提出的框架有助于从传统的被动式维护方法过渡到预测性维护方法,从而减少停机时间,提高雷达接收机的整体可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic prognostics framework development approach for a radar receiver
Radar receivers are vital components in modern radar systems, and their reliable operation is crucial for accurate target detection and tracking. However, degrading receiver components can lead to reduced gain, increased noise levels, and decreased probability of detection affecting the overall radar performance. We present an efficient real-time prognostic framework for a radar receiver. The effect of the performance degradation of critical devices on the radar receiver is analyzed. A prognostic framework is developed based on the relationship between device health and receiver performance. Subsequently, an improved prognostic model based on the integration of Weibull distribution and long short-term memory network is developed and trained to accurately estimate the remaining useful life (RUL) of the receiver. Integrating survival analysis and deep learning techniques offers a robust solution for accurate RUL estimation, which can significantly enhance maintenance strategies. The proposed framework facilitates transitioning from traditional reactive maintenance practices to a predictive maintenance approach, thereby reducing downtime and improving the overall availability of radar receivers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Remote Sensing
Journal of Applied Remote Sensing 环境科学-成像科学与照相技术
CiteScore
3.40
自引率
11.80%
发文量
194
审稿时长
3 months
期刊介绍: The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信