{"title":"强迫费希尔-KPP方程的移动奇点:渐近方法","authors":"Markus Kaczvinszki, Stefan Braun","doi":"10.1137/23m1552905","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 84, Issue 2, Page 710-731, April 2024. <br/> Abstract. The creation of hairpin or lambda vortices, typical for the early stages of the laminar-turbulent transition process in various boundary layer flows, in some sense may be associated with blow-up solutions of the Fisher–Kolmogorov–Petrovsky–Piskunov equation. In contrast to the usual applications of this nonlinear evolution equation of the reaction-diffusion type, the solution quantity in the present context needs to stay neither bounded nor positive. We focus on the solution behavior beyond a finite-time point blow-up event, which consists of two moving singularities (representing the cores of the vortex legs) propagating in opposite directions, and their initial motion is determined with the method of matched asymptotic expansions. After resolving subtleties concerning the transition between logarithmic and algebraic expansion terms regarding asymptotic layers, we find that the internal singularity structure resembles a combination of second- and first-order poles in the form of a singular traveling wave with a time-dependent speed imprinted through the characteristics of the preceding blow-up event.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moving Singularities of the Forced Fisher–KPP Equation: An Asymptotic Approach\",\"authors\":\"Markus Kaczvinszki, Stefan Braun\",\"doi\":\"10.1137/23m1552905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Mathematics, Volume 84, Issue 2, Page 710-731, April 2024. <br/> Abstract. The creation of hairpin or lambda vortices, typical for the early stages of the laminar-turbulent transition process in various boundary layer flows, in some sense may be associated with blow-up solutions of the Fisher–Kolmogorov–Petrovsky–Piskunov equation. In contrast to the usual applications of this nonlinear evolution equation of the reaction-diffusion type, the solution quantity in the present context needs to stay neither bounded nor positive. We focus on the solution behavior beyond a finite-time point blow-up event, which consists of two moving singularities (representing the cores of the vortex legs) propagating in opposite directions, and their initial motion is determined with the method of matched asymptotic expansions. After resolving subtleties concerning the transition between logarithmic and algebraic expansion terms regarding asymptotic layers, we find that the internal singularity structure resembles a combination of second- and first-order poles in the form of a singular traveling wave with a time-dependent speed imprinted through the characteristics of the preceding blow-up event.\",\"PeriodicalId\":51149,\"journal\":{\"name\":\"SIAM Journal on Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1552905\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1552905","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Moving Singularities of the Forced Fisher–KPP Equation: An Asymptotic Approach
SIAM Journal on Applied Mathematics, Volume 84, Issue 2, Page 710-731, April 2024. Abstract. The creation of hairpin or lambda vortices, typical for the early stages of the laminar-turbulent transition process in various boundary layer flows, in some sense may be associated with blow-up solutions of the Fisher–Kolmogorov–Petrovsky–Piskunov equation. In contrast to the usual applications of this nonlinear evolution equation of the reaction-diffusion type, the solution quantity in the present context needs to stay neither bounded nor positive. We focus on the solution behavior beyond a finite-time point blow-up event, which consists of two moving singularities (representing the cores of the vortex legs) propagating in opposite directions, and their initial motion is determined with the method of matched asymptotic expansions. After resolving subtleties concerning the transition between logarithmic and algebraic expansion terms regarding asymptotic layers, we find that the internal singularity structure resembles a combination of second- and first-order poles in the form of a singular traveling wave with a time-dependent speed imprinted through the characteristics of the preceding blow-up event.
期刊介绍:
SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.