{"title":"纳米流体中圆柱体的自然对流浸入冷却:开发新的努塞尔特数相关性","authors":"","doi":"10.1007/s40997-024-00759-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This study focuses on exploring the natural convection heat transfer within water-alumina nanofluids and its practical applications in immersion cooling. The aim is to improve the efficiency of this cooling method by utilizing fluids with improved thermal properties. The selected geometry is a vertical cylinder, which is of great significance in engineering applications and academic research. The used nanofluid consists of <span> <span>\\({{\\text{Al}}}_{2}{{\\text{O}}}_{3}-{\\text{water}}\\)</span> </span> nanofluid, with varying volume fractions (0.1, 0.2, and 0.5%). Experimental assessments were carried out using a steady-state methodology. Numerical simulations employ the single-phase and two-phase mixture approaches. The results of this research reveal the impressive accuracy of the mixture method in simulating external natural convection when compared to concurrently obtained experimental data. Furthermore, in the present paper, the single-phase method has yielded results deemed acceptable and closely aligned with the outcomes from the two-phase method. This alignment was achieved through the utilization of appropriate relationships, ensuring the accurate estimation of thermophysical properties. Notably, it becomes evident that established correlations for the Nusselt number correlation of natural convection designed for conventional fluids and the mere incorporation of the thermophysical properties of nanofluids are insufficient for the accurate prediction of the Nusselt number for nanofluids. In response to this challenge, a novel Nusselt correlation is introduced, comprehensively considering the thermophysical properties of <span> <span>\\({{\\text{Al}}}_{2}{{\\text{O}}}_{3}-{\\text{water}}\\)</span> </span> nanofluids, nanoparticle transport mechanisms, geometric attributes of the studied object, and nanoparticle volume fraction. Comparative assessments with previous correlations emphasize the enhanced predictive accuracy of the proposed innovative correlation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural Convection Immersion Cooling of the Cylinders in Nanofluids: Developing a New Nusselt Number Correlation\",\"authors\":\"\",\"doi\":\"10.1007/s40997-024-00759-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>This study focuses on exploring the natural convection heat transfer within water-alumina nanofluids and its practical applications in immersion cooling. The aim is to improve the efficiency of this cooling method by utilizing fluids with improved thermal properties. The selected geometry is a vertical cylinder, which is of great significance in engineering applications and academic research. The used nanofluid consists of <span> <span>\\\\({{\\\\text{Al}}}_{2}{{\\\\text{O}}}_{3}-{\\\\text{water}}\\\\)</span> </span> nanofluid, with varying volume fractions (0.1, 0.2, and 0.5%). Experimental assessments were carried out using a steady-state methodology. Numerical simulations employ the single-phase and two-phase mixture approaches. The results of this research reveal the impressive accuracy of the mixture method in simulating external natural convection when compared to concurrently obtained experimental data. Furthermore, in the present paper, the single-phase method has yielded results deemed acceptable and closely aligned with the outcomes from the two-phase method. This alignment was achieved through the utilization of appropriate relationships, ensuring the accurate estimation of thermophysical properties. Notably, it becomes evident that established correlations for the Nusselt number correlation of natural convection designed for conventional fluids and the mere incorporation of the thermophysical properties of nanofluids are insufficient for the accurate prediction of the Nusselt number for nanofluids. In response to this challenge, a novel Nusselt correlation is introduced, comprehensively considering the thermophysical properties of <span> <span>\\\\({{\\\\text{Al}}}_{2}{{\\\\text{O}}}_{3}-{\\\\text{water}}\\\\)</span> </span> nanofluids, nanoparticle transport mechanisms, geometric attributes of the studied object, and nanoparticle volume fraction. Comparative assessments with previous correlations emphasize the enhanced predictive accuracy of the proposed innovative correlation.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40997-024-00759-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-024-00759-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Natural Convection Immersion Cooling of the Cylinders in Nanofluids: Developing a New Nusselt Number Correlation
Abstract
This study focuses on exploring the natural convection heat transfer within water-alumina nanofluids and its practical applications in immersion cooling. The aim is to improve the efficiency of this cooling method by utilizing fluids with improved thermal properties. The selected geometry is a vertical cylinder, which is of great significance in engineering applications and academic research. The used nanofluid consists of \({{\text{Al}}}_{2}{{\text{O}}}_{3}-{\text{water}}\) nanofluid, with varying volume fractions (0.1, 0.2, and 0.5%). Experimental assessments were carried out using a steady-state methodology. Numerical simulations employ the single-phase and two-phase mixture approaches. The results of this research reveal the impressive accuracy of the mixture method in simulating external natural convection when compared to concurrently obtained experimental data. Furthermore, in the present paper, the single-phase method has yielded results deemed acceptable and closely aligned with the outcomes from the two-phase method. This alignment was achieved through the utilization of appropriate relationships, ensuring the accurate estimation of thermophysical properties. Notably, it becomes evident that established correlations for the Nusselt number correlation of natural convection designed for conventional fluids and the mere incorporation of the thermophysical properties of nanofluids are insufficient for the accurate prediction of the Nusselt number for nanofluids. In response to this challenge, a novel Nusselt correlation is introduced, comprehensively considering the thermophysical properties of \({{\text{Al}}}_{2}{{\text{O}}}_{3}-{\text{water}}\) nanofluids, nanoparticle transport mechanisms, geometric attributes of the studied object, and nanoparticle volume fraction. Comparative assessments with previous correlations emphasize the enhanced predictive accuracy of the proposed innovative correlation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.