修正的 Volterra-Leslie 化合模型的数学分析

IF 1.3 4区 生物学 Q3 BIOLOGY
Mohammed Amine Hamra
{"title":"修正的 Volterra-Leslie 化合模型的数学分析","authors":"Mohammed Amine Hamra","doi":"10.1007/s12064-024-00415-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the asymptotic behavior of a modified chemostat model. We first demonstrate the existence of equilibria. Then, we present a mathematical analysis for the model, the invariance, the positivity, the persistence of the solutions, and the asymptotic global stability of the interior equilibrium. Some numerical simulations are carried out to illustrate the main results.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical analysis of a modified Volterra-Leslie chemostat Model\",\"authors\":\"Mohammed Amine Hamra\",\"doi\":\"10.1007/s12064-024-00415-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the asymptotic behavior of a modified chemostat model. We first demonstrate the existence of equilibria. Then, we present a mathematical analysis for the model, the invariance, the positivity, the persistence of the solutions, and the asymptotic global stability of the interior equilibrium. Some numerical simulations are carried out to illustrate the main results.</p>\",\"PeriodicalId\":54428,\"journal\":{\"name\":\"Theory in Biosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory in Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12064-024-00415-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory in Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12064-024-00415-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了修正的恒温模型的渐进行为。我们首先证明了均衡的存在。然后,我们对模型、解的不变性、实在性、持久性以及内部平衡的渐近全局稳定性进行了数学分析。为了说明主要结果,我们进行了一些数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mathematical analysis of a modified Volterra-Leslie chemostat Model

Mathematical analysis of a modified Volterra-Leslie chemostat Model

In this paper, we investigate the asymptotic behavior of a modified chemostat model. We first demonstrate the existence of equilibria. Then, we present a mathematical analysis for the model, the invariance, the positivity, the persistence of the solutions, and the asymptotic global stability of the interior equilibrium. Some numerical simulations are carried out to illustrate the main results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory in Biosciences
Theory in Biosciences 生物-生物学
CiteScore
2.70
自引率
9.10%
发文量
21
审稿时长
3 months
期刊介绍: Theory in Biosciences focuses on new concepts in theoretical biology. It also includes analytical and modelling approaches as well as philosophical and historical issues. Central topics are: Artificial Life; Bioinformatics with a focus on novel methods, phenomena, and interpretations; Bioinspired Modeling; Complexity, Robustness, and Resilience; Embodied Cognition; Evolutionary Biology; Evo-Devo; Game Theoretic Modeling; Genetics; History of Biology; Language Evolution; Mathematical Biology; Origin of Life; Philosophy of Biology; Population Biology; Systems Biology; Theoretical Ecology; Theoretical Molecular Biology; Theoretical Neuroscience & Cognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信