利用偏转信息进行基于优化的眼球跟踪

IF 4.2 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Tianfu Wang;Jiazhang Wang;Nathan Matsuda;Oliver Cossairt;Florian Willomitzer
{"title":"利用偏转信息进行基于优化的眼球跟踪","authors":"Tianfu Wang;Jiazhang Wang;Nathan Matsuda;Oliver Cossairt;Florian Willomitzer","doi":"10.1109/TCI.2024.3382494","DOIUrl":null,"url":null,"abstract":"Eye tracking is an important tool in many scientific and commercial domains. State-of-the-art eye tracking methods are either reflection-based and track reflections of sparse point light sources, or image-based and exploit 2D features of the acquired eye image. In this work, we attempt to significantly improve reflection-based methods by utilizing pixel-dense deflectometric surface measurements in combination with optimization-based inverse rendering algorithms. Utilizing the known geometry of our deflectometric setup, we develop a differentiable rendering pipeline based on PyTorch3D that simulates a virtual eye under screen illumination. Eventually, we exploit the image-screen-correspondence information from the captured measurements to find the eye's \n<italic>rotation</i>\n, \n<italic>translation</i>\n, and \n<italic>shape</i>\n parameters with our renderer via gradient descent. We demonstrate real-world experiments with evaluated mean relative gaze errors below \n<inline-formula><tex-math>$0.45 ^{\\circ }$</tex-math></inline-formula>\n at a precision better than \n<inline-formula><tex-math>$0.11 ^{\\circ }$</tex-math></inline-formula>\n. Moreover, we show an improvement of 6X over a representative reflection-based state-of-the-art method in simulation. In addition, we demonstrate a special variant of our method that does not require a specific pattern and can work with arbitrary image or video content from every screen (e.g., in a VR headset).","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"888-898"},"PeriodicalIF":4.2000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiable Deflectometric Eye Tracking\",\"authors\":\"Tianfu Wang;Jiazhang Wang;Nathan Matsuda;Oliver Cossairt;Florian Willomitzer\",\"doi\":\"10.1109/TCI.2024.3382494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eye tracking is an important tool in many scientific and commercial domains. State-of-the-art eye tracking methods are either reflection-based and track reflections of sparse point light sources, or image-based and exploit 2D features of the acquired eye image. In this work, we attempt to significantly improve reflection-based methods by utilizing pixel-dense deflectometric surface measurements in combination with optimization-based inverse rendering algorithms. Utilizing the known geometry of our deflectometric setup, we develop a differentiable rendering pipeline based on PyTorch3D that simulates a virtual eye under screen illumination. Eventually, we exploit the image-screen-correspondence information from the captured measurements to find the eye's \\n<italic>rotation</i>\\n, \\n<italic>translation</i>\\n, and \\n<italic>shape</i>\\n parameters with our renderer via gradient descent. We demonstrate real-world experiments with evaluated mean relative gaze errors below \\n<inline-formula><tex-math>$0.45 ^{\\\\circ }$</tex-math></inline-formula>\\n at a precision better than \\n<inline-formula><tex-math>$0.11 ^{\\\\circ }$</tex-math></inline-formula>\\n. Moreover, we show an improvement of 6X over a representative reflection-based state-of-the-art method in simulation. In addition, we demonstrate a special variant of our method that does not require a specific pattern and can work with arbitrary image or video content from every screen (e.g., in a VR headset).\",\"PeriodicalId\":56022,\"journal\":{\"name\":\"IEEE Transactions on Computational Imaging\",\"volume\":\"10 \",\"pages\":\"888-898\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10491405/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10491405/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

眼球跟踪是许多科学和商业领域的重要工具。最先进的眼球跟踪方法要么基于反射,跟踪稀疏点光源的反射,要么基于图像,利用获取的眼球图像的二维特征。在这项工作中,我们尝试利用像素密集的偏转表面测量与基于优化的反渲染算法相结合,大幅改进基于反射的方法。利用偏转测量装置的已知几何形状,我们开发了基于 PyTorch3D 的可微分渲染管道,模拟屏幕照明下的虚拟眼睛。最后,我们利用从捕获的测量结果中获得的图像-屏幕-对应信息,通过梯度下降法,用我们的渲染器找到眼睛的旋转、平移和形状参数。我们展示了真实世界的实验,评估的平均相对注视误差低于 0.45 ^{\circ }$,精度优于 0.11 ^{\circ }$。此外,我们还在模拟中展示了比基于反射的代表性先进方法提高 6 倍的效果。此外,我们还展示了我们方法的一个特殊变体,它不需要特定的模式,可以处理来自每个屏幕(例如 VR 头显)的任意图像或视频内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentiable Deflectometric Eye Tracking
Eye tracking is an important tool in many scientific and commercial domains. State-of-the-art eye tracking methods are either reflection-based and track reflections of sparse point light sources, or image-based and exploit 2D features of the acquired eye image. In this work, we attempt to significantly improve reflection-based methods by utilizing pixel-dense deflectometric surface measurements in combination with optimization-based inverse rendering algorithms. Utilizing the known geometry of our deflectometric setup, we develop a differentiable rendering pipeline based on PyTorch3D that simulates a virtual eye under screen illumination. Eventually, we exploit the image-screen-correspondence information from the captured measurements to find the eye's rotation , translation , and shape parameters with our renderer via gradient descent. We demonstrate real-world experiments with evaluated mean relative gaze errors below $0.45 ^{\circ }$ at a precision better than $0.11 ^{\circ }$ . Moreover, we show an improvement of 6X over a representative reflection-based state-of-the-art method in simulation. In addition, we demonstrate a special variant of our method that does not require a specific pattern and can work with arbitrary image or video content from every screen (e.g., in a VR headset).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computational Imaging
IEEE Transactions on Computational Imaging Mathematics-Computational Mathematics
CiteScore
8.20
自引率
7.40%
发文量
59
期刊介绍: The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信