{"title":"开发新型整体式顺应洛伦兹力驱动 XY 纳米定位系统","authors":"Xu Yang, Xin Liu, Yilong Zhu, Feng Qiao, Shizhen Li, Zhiwei Zhu, Limin Zhu","doi":"10.1088/1361-6439/ad2f47","DOIUrl":null,"url":null,"abstract":"A novel monolithic compliant Lorentz-force-driven XY nanopositioning system (MCLNS) is designed, analyzed, and experimentally assessed with the aim of high-resolution positioning across a large workspace. A double-symmetric Lorentz-force actuator (DSLA) with the benefits of zero friction, high thrust, and large stroke is proposed to generate the actuation force. Correspondingly, a monolithic four-prismatic parallel compliant mechanism (4P-PCM) is exploited to transmit the actuation motion to the central platform and minimize the parasitic motion. The unique integration of four DSLAs and one 4P-PCM make the proposed MCLNS possess compact structure and stable performance. The characterization of the MCLNS is formulated by a specially established analytical model and validated by finite-element analysis simulation and experimental tests. Experimental studies show that the workspace of the MCLNS prototype is large than 0.87 × 0.87 mm<sup>2</sup> and the positioning resolution of the MCLNS prototype is better than 9 nm. By means of a nonlinear forward proportional integral derivative control strategy, the maximum contouring error of the MCLNS is maintained within 2.7% while tracking a 1257 <italic toggle=\"yes\">μ</italic>m s<sup>−1</sup> circular trajectory.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"53 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a novel monolithic compliant Lorentz-force-driven XY nanopositioning system\",\"authors\":\"Xu Yang, Xin Liu, Yilong Zhu, Feng Qiao, Shizhen Li, Zhiwei Zhu, Limin Zhu\",\"doi\":\"10.1088/1361-6439/ad2f47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel monolithic compliant Lorentz-force-driven XY nanopositioning system (MCLNS) is designed, analyzed, and experimentally assessed with the aim of high-resolution positioning across a large workspace. A double-symmetric Lorentz-force actuator (DSLA) with the benefits of zero friction, high thrust, and large stroke is proposed to generate the actuation force. Correspondingly, a monolithic four-prismatic parallel compliant mechanism (4P-PCM) is exploited to transmit the actuation motion to the central platform and minimize the parasitic motion. The unique integration of four DSLAs and one 4P-PCM make the proposed MCLNS possess compact structure and stable performance. The characterization of the MCLNS is formulated by a specially established analytical model and validated by finite-element analysis simulation and experimental tests. Experimental studies show that the workspace of the MCLNS prototype is large than 0.87 × 0.87 mm<sup>2</sup> and the positioning resolution of the MCLNS prototype is better than 9 nm. By means of a nonlinear forward proportional integral derivative control strategy, the maximum contouring error of the MCLNS is maintained within 2.7% while tracking a 1257 <italic toggle=\\\"yes\\\">μ</italic>m s<sup>−1</sup> circular trajectory.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/ad2f47\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad2f47","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Development of a novel monolithic compliant Lorentz-force-driven XY nanopositioning system
A novel monolithic compliant Lorentz-force-driven XY nanopositioning system (MCLNS) is designed, analyzed, and experimentally assessed with the aim of high-resolution positioning across a large workspace. A double-symmetric Lorentz-force actuator (DSLA) with the benefits of zero friction, high thrust, and large stroke is proposed to generate the actuation force. Correspondingly, a monolithic four-prismatic parallel compliant mechanism (4P-PCM) is exploited to transmit the actuation motion to the central platform and minimize the parasitic motion. The unique integration of four DSLAs and one 4P-PCM make the proposed MCLNS possess compact structure and stable performance. The characterization of the MCLNS is formulated by a specially established analytical model and validated by finite-element analysis simulation and experimental tests. Experimental studies show that the workspace of the MCLNS prototype is large than 0.87 × 0.87 mm2 and the positioning resolution of the MCLNS prototype is better than 9 nm. By means of a nonlinear forward proportional integral derivative control strategy, the maximum contouring error of the MCLNS is maintained within 2.7% while tracking a 1257 μm s−1 circular trajectory.
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.