双流体欧拉-泊松系统的全局零振荡极限

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Cunming Liu, Han Sheng
{"title":"双流体欧拉-泊松系统的全局零振荡极限","authors":"Cunming Liu,&nbsp;Han Sheng","doi":"10.1007/s00245-024-10131-8","DOIUrl":null,"url":null,"abstract":"<div><p>We study the relaxation problem for a two-fluid Euler-Poisson system. We prove the global-in-time convergence of the system for smooth solutions near the constant equilibrium states. The limit system is the two-fluid drift-diffusion system as the relaxation time tends to zero. In the proof, we establish uniform energy estimates of smooth solutions for all the parameters and the time. These estimates allow us to pass to the limit in the system to obtain the limit system. Moreover, the global convergence rate of the solutions is obtained by stream function techniques.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"89 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Zero-Relaxation Limit for a Two-Fluid Euler–Poisson System\",\"authors\":\"Cunming Liu,&nbsp;Han Sheng\",\"doi\":\"10.1007/s00245-024-10131-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the relaxation problem for a two-fluid Euler-Poisson system. We prove the global-in-time convergence of the system for smooth solutions near the constant equilibrium states. The limit system is the two-fluid drift-diffusion system as the relaxation time tends to zero. In the proof, we establish uniform energy estimates of smooth solutions for all the parameters and the time. These estimates allow us to pass to the limit in the system to obtain the limit system. Moreover, the global convergence rate of the solutions is obtained by stream function techniques.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"89 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-024-10131-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10131-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了双流体欧拉-泊松系统的松弛问题。我们证明了系统在恒定平衡态附近光滑解的全局时间收敛性。当松弛时间趋近于零时,极限系统为双流体漂移扩散系统。在证明过程中,我们建立了所有参数和时间的平稳解的均匀能量估计。通过这些估计值,我们可以通过系统中的极限得到极限系统。此外,我们还通过流函数技术获得了解的全局收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Zero-Relaxation Limit for a Two-Fluid Euler–Poisson System

We study the relaxation problem for a two-fluid Euler-Poisson system. We prove the global-in-time convergence of the system for smooth solutions near the constant equilibrium states. The limit system is the two-fluid drift-diffusion system as the relaxation time tends to zero. In the proof, we establish uniform energy estimates of smooth solutions for all the parameters and the time. These estimates allow us to pass to the limit in the system to obtain the limit system. Moreover, the global convergence rate of the solutions is obtained by stream function techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信