在硅衬底上生长出用于量子光子应用的高质量 InGaAs/GaAs 单量子点

Imad Limame, Peter Ludewig, Ching-Wen Shih, Marcel Hohn, Chirag C. Palekar, Wolfgang Stolz, and Stephan Reitzenstein
{"title":"在硅衬底上生长出用于量子光子应用的高质量 InGaAs/GaAs 单量子点","authors":"Imad Limame, Peter Ludewig, Ching-Wen Shih, Marcel Hohn, Chirag C. Palekar, Wolfgang Stolz, and Stephan Reitzenstein","doi":"10.1364/opticaq.510829","DOIUrl":null,"url":null,"abstract":"Developing non-classical light sources for use in quantum information technology is a primary goal of quantum nanophotonics. Significant progress has been made in this area using quantum dots grown on III/V semiconductor substrates. However, it is crucial to develop quantum light sources based on silicon wafers to facilitate large-scale integration of electronic circuits and quantum photonic structures. We present a method for the direct heteroepitaxial growth of high-quality InGaAs quantum dots on silicon, which enables the fabrication of scalable and cost-effective quantum photonics devices that are compatible with silicon technology. To achieve high-quality GaAs heterostructures, we apply an intermediate GaP buffer and defect-reducing layers on a silicon substrate. The epitaxially grown quantum dots exhibit optical and quantum-optical properties similar to reference ones based on conventional GaAs substrates. The distributed Bragg reflector used as a backside mirror enables us to achieve bright emission with up to (18 ± 1)% photon extraction efficiency. Additionally, the quantum dots exhibit strong multi-photon suppression with g<sup>(2)</sup>(τ) = (3.7 ± 0.2) × 10<sup>−2</sup> and high photon indistinguishability V = (66 ± 19)% under non-resonant excitation. These results indicate the high potential of our heteroepitaxy approach in the field of silicon-compatible quantum nanophotonics. Our approach can pave the way for future chips that combine electronic and quantum photonic functionality.","PeriodicalId":501828,"journal":{"name":"Optica Quantum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-quality single InGaAs/GaAs quantum dot growth on a silicon substrate for quantum photonic applications\",\"authors\":\"Imad Limame, Peter Ludewig, Ching-Wen Shih, Marcel Hohn, Chirag C. Palekar, Wolfgang Stolz, and Stephan Reitzenstein\",\"doi\":\"10.1364/opticaq.510829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing non-classical light sources for use in quantum information technology is a primary goal of quantum nanophotonics. Significant progress has been made in this area using quantum dots grown on III/V semiconductor substrates. However, it is crucial to develop quantum light sources based on silicon wafers to facilitate large-scale integration of electronic circuits and quantum photonic structures. We present a method for the direct heteroepitaxial growth of high-quality InGaAs quantum dots on silicon, which enables the fabrication of scalable and cost-effective quantum photonics devices that are compatible with silicon technology. To achieve high-quality GaAs heterostructures, we apply an intermediate GaP buffer and defect-reducing layers on a silicon substrate. The epitaxially grown quantum dots exhibit optical and quantum-optical properties similar to reference ones based on conventional GaAs substrates. The distributed Bragg reflector used as a backside mirror enables us to achieve bright emission with up to (18 ± 1)% photon extraction efficiency. Additionally, the quantum dots exhibit strong multi-photon suppression with g<sup>(2)</sup>(τ) = (3.7 ± 0.2) × 10<sup>−2</sup> and high photon indistinguishability V = (66 ± 19)% under non-resonant excitation. These results indicate the high potential of our heteroepitaxy approach in the field of silicon-compatible quantum nanophotonics. Our approach can pave the way for future chips that combine electronic and quantum photonic functionality.\",\"PeriodicalId\":501828,\"journal\":{\"name\":\"Optica Quantum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/opticaq.510829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/opticaq.510829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开发用于量子信息技术的非经典光源是量子纳米光子学的主要目标。利用在 III/V 族半导体衬底上生长的量子点在这一领域取得了重大进展。然而,开发基于硅片的量子光源以促进电子电路和量子光子结构的大规模集成至关重要。我们提出了一种在硅上直接异质外延生长高质量 InGaAs 量子点的方法,从而能够制造出与硅技术兼容的可扩展且具有成本效益的量子光子器件。为了实现高质量的砷化镓异质结构,我们在硅衬底上应用了中间 GaP 缓冲层和缺陷减少层。外延生长的量子点表现出的光学和量子光学特性与基于传统砷化镓衬底的参考特性相似。用作背面反射镜的分布式布拉格反射器使我们能够实现明亮的发射,光子萃取效率高达 (18 ± 1)%。此外,量子点还表现出很强的多光子抑制能力(g(2)(τ) = (3.7 ± 0.2) × 10-2),并且在非共振激发下具有很高的光子不可分性 V = (66 ± 19)%。这些结果表明,我们的异质外延方法在硅兼容量子纳米光子学领域具有巨大潜力。我们的方法可以为未来结合电子和量子光子功能的芯片铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-quality single InGaAs/GaAs quantum dot growth on a silicon substrate for quantum photonic applications
Developing non-classical light sources for use in quantum information technology is a primary goal of quantum nanophotonics. Significant progress has been made in this area using quantum dots grown on III/V semiconductor substrates. However, it is crucial to develop quantum light sources based on silicon wafers to facilitate large-scale integration of electronic circuits and quantum photonic structures. We present a method for the direct heteroepitaxial growth of high-quality InGaAs quantum dots on silicon, which enables the fabrication of scalable and cost-effective quantum photonics devices that are compatible with silicon technology. To achieve high-quality GaAs heterostructures, we apply an intermediate GaP buffer and defect-reducing layers on a silicon substrate. The epitaxially grown quantum dots exhibit optical and quantum-optical properties similar to reference ones based on conventional GaAs substrates. The distributed Bragg reflector used as a backside mirror enables us to achieve bright emission with up to (18 ± 1)% photon extraction efficiency. Additionally, the quantum dots exhibit strong multi-photon suppression with g(2)(τ) = (3.7 ± 0.2) × 10−2 and high photon indistinguishability V = (66 ± 19)% under non-resonant excitation. These results indicate the high potential of our heteroepitaxy approach in the field of silicon-compatible quantum nanophotonics. Our approach can pave the way for future chips that combine electronic and quantum photonic functionality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信