{"title":"三叶草使用数据驱动方法确定差异表达基因优先次序的无偏方法","authors":"Gina Miku Oba, Ryuichiro Nakato","doi":"10.1111/gtc.13119","DOIUrl":null,"url":null,"abstract":"<p>Identifying key genes from a list of differentially expressed genes (DEGs) is a critical step in transcriptome analysis. However, current methods, including Gene Ontology analysis and manual annotation, essentially rely on existing knowledge, which is highly biased depending on the extent of the literature. As a result, understudied genes, some of which may be associated with important molecular mechanisms, are often ignored or remain obscure. To address this problem, we propose Clover, a data-driven scoring method to specifically highlight understudied genes. Clover aims to prioritize genes associated with important molecular mechanisms by integrating three metrics: the likelihood of appearing in the DEG list, tissue specificity, and number of publications. We applied Clover to Alzheimer's disease data and confirmed that it successfully detected known associated genes. Moreover, Clover effectively prioritized understudied but potentially druggable genes. Overall, our method offers a novel approach to gene characterization and has the potential to expand our understanding of gene functions. Clover is an open-source software written in Python3 and available on GitHub at https://github.com/G708/Clover.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 6","pages":"456-470"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13119","citationCount":"0","resultStr":"{\"title\":\"Clover: An unbiased method for prioritizing differentially expressed genes using a data-driven approach\",\"authors\":\"Gina Miku Oba, Ryuichiro Nakato\",\"doi\":\"10.1111/gtc.13119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Identifying key genes from a list of differentially expressed genes (DEGs) is a critical step in transcriptome analysis. However, current methods, including Gene Ontology analysis and manual annotation, essentially rely on existing knowledge, which is highly biased depending on the extent of the literature. As a result, understudied genes, some of which may be associated with important molecular mechanisms, are often ignored or remain obscure. To address this problem, we propose Clover, a data-driven scoring method to specifically highlight understudied genes. Clover aims to prioritize genes associated with important molecular mechanisms by integrating three metrics: the likelihood of appearing in the DEG list, tissue specificity, and number of publications. We applied Clover to Alzheimer's disease data and confirmed that it successfully detected known associated genes. Moreover, Clover effectively prioritized understudied but potentially druggable genes. Overall, our method offers a novel approach to gene characterization and has the potential to expand our understanding of gene functions. Clover is an open-source software written in Python3 and available on GitHub at https://github.com/G708/Clover.</p>\",\"PeriodicalId\":12742,\"journal\":{\"name\":\"Genes to Cells\",\"volume\":\"29 6\",\"pages\":\"456-470\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13119\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes to Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13119\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes to Cells","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13119","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Clover: An unbiased method for prioritizing differentially expressed genes using a data-driven approach
Identifying key genes from a list of differentially expressed genes (DEGs) is a critical step in transcriptome analysis. However, current methods, including Gene Ontology analysis and manual annotation, essentially rely on existing knowledge, which is highly biased depending on the extent of the literature. As a result, understudied genes, some of which may be associated with important molecular mechanisms, are often ignored or remain obscure. To address this problem, we propose Clover, a data-driven scoring method to specifically highlight understudied genes. Clover aims to prioritize genes associated with important molecular mechanisms by integrating three metrics: the likelihood of appearing in the DEG list, tissue specificity, and number of publications. We applied Clover to Alzheimer's disease data and confirmed that it successfully detected known associated genes. Moreover, Clover effectively prioritized understudied but potentially druggable genes. Overall, our method offers a novel approach to gene characterization and has the potential to expand our understanding of gene functions. Clover is an open-source software written in Python3 and available on GitHub at https://github.com/G708/Clover.
期刊介绍:
Genes to Cells provides an international forum for the publication of papers describing important aspects of molecular and cellular biology. The journal aims to present papers that provide conceptual advance in the relevant field. Particular emphasis will be placed on work aimed at understanding the basic mechanisms underlying biological events.