V. A. Ternovoi, E. P. Ponomareva, E. V. Protopopova, N. L. Tupota, T. P. Mikryukova, V. B. Loktev
{"title":"蜱传脑炎病毒基因组在培养过程中的变化","authors":"V. A. Ternovoi, E. P. Ponomareva, E. V. Protopopova, N. L. Tupota, T. P. Mikryukova, V. B. Loktev","doi":"10.1134/s0026893324020146","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The tick-borne encephalitis virus (TBEV) strain C11-13 (GenBank acc. no. OQ565596) of the Siberian genotype was previously isolated from the brain of a deceased person. TBEV C11-13 variants obtained at passages 3 and 8 in SPEV cells were inoculated into the brains of white mice for subsequent passages. Full genome sequences of all virus variants were analyzed by high-throughput sequencing. A total of 41 single nucleotide substitutions were found to occur mainly in the genes for the nonstructural proteins NS3 and NS5 (GenBank MF043953, OP902894, and OP902895), and 12 amino acid substitutions were identified in the deduced protein sequences. Reverse nucleotide and amino acid substitutions were detected after three passages through mouse brains. The substitutions restored the primary structures that were characteristic of the isolate C11-13 from a human patient and changed during the eight subsequent passages in SPEV cells. In addition, the 3′-untranslated region (3′-UTR) of the viral genome increased by 306 nt. The Y3 and Y2 3'-UTR elements were found to contain imperfect L and R repeats, which were probably associated with inhibition of cellular XRN1 RNase and thus involved in the formation of subgenomic flaviviral RNAs (sfRNAs). All TBEV variants showed high-level reproduction in both cell cultures and mouse brains. The genomic changes that occurred during successive passages of TBEV are most likely due to its significant genetic variability, which ensures its efficient reproduction in various hosts and its broad distribution in various climatic zones.</p>","PeriodicalId":18734,"journal":{"name":"Molecular Biology","volume":"298 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in the Genome of the Tick-Borne Encephalitis Virus during Cultivation\",\"authors\":\"V. A. Ternovoi, E. P. Ponomareva, E. V. Protopopova, N. L. Tupota, T. P. Mikryukova, V. B. Loktev\",\"doi\":\"10.1134/s0026893324020146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The tick-borne encephalitis virus (TBEV) strain C11-13 (GenBank acc. no. OQ565596) of the Siberian genotype was previously isolated from the brain of a deceased person. TBEV C11-13 variants obtained at passages 3 and 8 in SPEV cells were inoculated into the brains of white mice for subsequent passages. Full genome sequences of all virus variants were analyzed by high-throughput sequencing. A total of 41 single nucleotide substitutions were found to occur mainly in the genes for the nonstructural proteins NS3 and NS5 (GenBank MF043953, OP902894, and OP902895), and 12 amino acid substitutions were identified in the deduced protein sequences. Reverse nucleotide and amino acid substitutions were detected after three passages through mouse brains. The substitutions restored the primary structures that were characteristic of the isolate C11-13 from a human patient and changed during the eight subsequent passages in SPEV cells. In addition, the 3′-untranslated region (3′-UTR) of the viral genome increased by 306 nt. The Y3 and Y2 3'-UTR elements were found to contain imperfect L and R repeats, which were probably associated with inhibition of cellular XRN1 RNase and thus involved in the formation of subgenomic flaviviral RNAs (sfRNAs). All TBEV variants showed high-level reproduction in both cell cultures and mouse brains. The genomic changes that occurred during successive passages of TBEV are most likely due to its significant genetic variability, which ensures its efficient reproduction in various hosts and its broad distribution in various climatic zones.</p>\",\"PeriodicalId\":18734,\"journal\":{\"name\":\"Molecular Biology\",\"volume\":\"298 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1134/s0026893324020146\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/s0026893324020146","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Changes in the Genome of the Tick-Borne Encephalitis Virus during Cultivation
Abstract
The tick-borne encephalitis virus (TBEV) strain C11-13 (GenBank acc. no. OQ565596) of the Siberian genotype was previously isolated from the brain of a deceased person. TBEV C11-13 variants obtained at passages 3 and 8 in SPEV cells were inoculated into the brains of white mice for subsequent passages. Full genome sequences of all virus variants were analyzed by high-throughput sequencing. A total of 41 single nucleotide substitutions were found to occur mainly in the genes for the nonstructural proteins NS3 and NS5 (GenBank MF043953, OP902894, and OP902895), and 12 amino acid substitutions were identified in the deduced protein sequences. Reverse nucleotide and amino acid substitutions were detected after three passages through mouse brains. The substitutions restored the primary structures that were characteristic of the isolate C11-13 from a human patient and changed during the eight subsequent passages in SPEV cells. In addition, the 3′-untranslated region (3′-UTR) of the viral genome increased by 306 nt. The Y3 and Y2 3'-UTR elements were found to contain imperfect L and R repeats, which were probably associated with inhibition of cellular XRN1 RNase and thus involved in the formation of subgenomic flaviviral RNAs (sfRNAs). All TBEV variants showed high-level reproduction in both cell cultures and mouse brains. The genomic changes that occurred during successive passages of TBEV are most likely due to its significant genetic variability, which ensures its efficient reproduction in various hosts and its broad distribution in various climatic zones.
期刊介绍:
Molecular Biology is an international peer reviewed journal that covers a wide scope of problems in molecular, cell and computational biology including genomics, proteomics, bioinformatics, molecular virology and immunology, molecular development biology, molecular evolution and related areals. Molecular Biology publishes reviews, experimental and theoretical works. Every year, the journal publishes special issues devoted to most rapidly developing branches of physical-chemical biology and to the most outstanding scientists.