恒定轴向荷载和不断增大的双向弯曲荷载作用下的超高强度混凝土转角梁柱连接静态特性

IF 1.8 4区 工程技术 Q3 ENGINEERING, CIVIL
Wissam Nadir, Ammar Yasir Ali, Akram Jawdhari, Majid M. A. Kadhim
{"title":"恒定轴向荷载和不断增大的双向弯曲荷载作用下的超高强度混凝土转角梁柱连接静态特性","authors":"Wissam Nadir, Ammar Yasir Ali, Akram Jawdhari, Majid M. A. Kadhim","doi":"10.1007/s40999-024-00957-2","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the behavior of beam–column (B-C) joints made of ultra-high performance concrete (UHPC) under constant axial force and increasing bi-directional bending. Third-scale corner B-C specimens, comprising a UHPC joint, two column segments, and two beams at right angle, were fabricated and tested to failure. The studied parameters were joint type, evaluating two materials UHPC and normal strength concrete (NSC), and spacing of transverse reinforcement in beams and columns. Test results indicated that utilizing UHPC in the joint region instead of conventional NSC results in increasing the ultimate capacity of the joint by 47%, changing the failure mode from brittle shear within the joint to a ductile beam flexure, increasing the joint ductility by 35–70%, and increasing the initial and secant stiffnesses by 27–50% and 57–74%, respectively. Leveraging the results from the study such as utilizing only half the transverse reinforcements required in national codes and removing transverse reinforcement in the joint, UHPC seems a viable option to solving the construction problems associated with NSC joints such as reinforcement congestion and concrete segregation. An analytical investigation is also included and showed the ACI-ASCE 352 code to significantly overpredict the joint shear capacity.</p>","PeriodicalId":50331,"journal":{"name":"International Journal of Civil Engineering","volume":"68 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Static Behavior of UHPC Corner Beam–Column Joint Under Constant Axial and Increasing Bi-Directional Bending Loads\",\"authors\":\"Wissam Nadir, Ammar Yasir Ali, Akram Jawdhari, Majid M. A. Kadhim\",\"doi\":\"10.1007/s40999-024-00957-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the behavior of beam–column (B-C) joints made of ultra-high performance concrete (UHPC) under constant axial force and increasing bi-directional bending. Third-scale corner B-C specimens, comprising a UHPC joint, two column segments, and two beams at right angle, were fabricated and tested to failure. The studied parameters were joint type, evaluating two materials UHPC and normal strength concrete (NSC), and spacing of transverse reinforcement in beams and columns. Test results indicated that utilizing UHPC in the joint region instead of conventional NSC results in increasing the ultimate capacity of the joint by 47%, changing the failure mode from brittle shear within the joint to a ductile beam flexure, increasing the joint ductility by 35–70%, and increasing the initial and secant stiffnesses by 27–50% and 57–74%, respectively. Leveraging the results from the study such as utilizing only half the transverse reinforcements required in national codes and removing transverse reinforcement in the joint, UHPC seems a viable option to solving the construction problems associated with NSC joints such as reinforcement congestion and concrete segregation. An analytical investigation is also included and showed the ACI-ASCE 352 code to significantly overpredict the joint shear capacity.</p>\",\"PeriodicalId\":50331,\"journal\":{\"name\":\"International Journal of Civil Engineering\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40999-024-00957-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40999-024-00957-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了超高性能混凝土 (UHPC) 制成的梁柱 (B-C) 接头在恒定轴向力和不断增加的双向弯曲下的行为。我们制作了由一个 UHPC 接头、两个柱段和两个成直角的梁组成的第三尺度转角 B-C 试件,并对其进行了破坏测试。研究参数包括连接类型、超高性能混凝土和普通强度混凝土(NSC)两种材料的评估以及梁和柱中横向钢筋的间距。测试结果表明,在连接区域使用超高性能混凝土而非传统的 NSC 可将连接的极限承载力提高 47%,将连接内的脆性剪切破坏模式转变为延展性梁弯曲破坏模式,将连接延展性提高 35-70%,并将初始刚度和秒刚度分别提高 27-50% 和 57-74%。利用研究结果,如仅使用国家规范要求的一半横向钢筋和去除连接处的横向钢筋,超高性能混凝土似乎是解决与 NSC 连接相关的施工问题(如钢筋拥塞和混凝土离析)的可行方案。此外,还进行了一项分析调查,结果表明 ACI-ASCE 352 规范大大高估了接缝的抗剪承载力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Static Behavior of UHPC Corner Beam–Column Joint Under Constant Axial and Increasing Bi-Directional Bending Loads

This study investigates the behavior of beam–column (B-C) joints made of ultra-high performance concrete (UHPC) under constant axial force and increasing bi-directional bending. Third-scale corner B-C specimens, comprising a UHPC joint, two column segments, and two beams at right angle, were fabricated and tested to failure. The studied parameters were joint type, evaluating two materials UHPC and normal strength concrete (NSC), and spacing of transverse reinforcement in beams and columns. Test results indicated that utilizing UHPC in the joint region instead of conventional NSC results in increasing the ultimate capacity of the joint by 47%, changing the failure mode from brittle shear within the joint to a ductile beam flexure, increasing the joint ductility by 35–70%, and increasing the initial and secant stiffnesses by 27–50% and 57–74%, respectively. Leveraging the results from the study such as utilizing only half the transverse reinforcements required in national codes and removing transverse reinforcement in the joint, UHPC seems a viable option to solving the construction problems associated with NSC joints such as reinforcement congestion and concrete segregation. An analytical investigation is also included and showed the ACI-ASCE 352 code to significantly overpredict the joint shear capacity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
5.90%
发文量
83
审稿时长
15 months
期刊介绍: International Journal of Civil Engineering, The official publication of Iranian Society of Civil Engineering and Iran University of Science and Technology is devoted to original and interdisciplinary, peer-reviewed papers on research related to the broad spectrum of civil engineering with similar emphasis on all topics.The journal provides a forum for the International Civil Engineering Community to present and discuss matters of major interest e.g. new developments in civil regulations, The topics are included but are not necessarily restricted to :- Structures- Geotechnics- Transportation- Environment- Earthquakes- Water Resources- Construction Engineering and Management, and New Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信