局部热非均衡状态下穿透性对流的稳定性

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Giuseppe Arnone, Florinda Capone, Jacopo Alfonso Gianfrani
{"title":"局部热非均衡状态下穿透性对流的稳定性","authors":"Giuseppe Arnone, Florinda Capone, Jacopo Alfonso Gianfrani","doi":"10.1098/rspa.2023.0820","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to investigate the onset of penetrative convection in a Darcy–Brinkman porous medium under the hypothesis of local thermal non-equilibrium. For the problem at stake, the strong form of the principle of exchange of stabilities has been proved, i.e. convective motions can occur only through secondary stationary motions. We perform linear and nonlinear stability analyses of the basic state, with particular regard to the behaviour of stability thresholds with respect to the relevant physical parameters characterizing the problem. The Chebyshev-<span><math><mi>τ</mi></math></span><span></span> method and the shooting method are employed and accurately implemented to solve the differential eigenvalue problems arising from linear and nonlinear analyses to determine critical Rayleigh numbers. Via numerical simulations, the stabilizing effect of the upper bounding plane temperature, of the Darcy number and of the interaction coefficient for the heat exchange, is demonstrated.</p>","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"202 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of penetrative convective currents in local thermal non-equilibrium\",\"authors\":\"Giuseppe Arnone, Florinda Capone, Jacopo Alfonso Gianfrani\",\"doi\":\"10.1098/rspa.2023.0820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this paper is to investigate the onset of penetrative convection in a Darcy–Brinkman porous medium under the hypothesis of local thermal non-equilibrium. For the problem at stake, the strong form of the principle of exchange of stabilities has been proved, i.e. convective motions can occur only through secondary stationary motions. We perform linear and nonlinear stability analyses of the basic state, with particular regard to the behaviour of stability thresholds with respect to the relevant physical parameters characterizing the problem. The Chebyshev-<span><math><mi>τ</mi></math></span><span></span> method and the shooting method are employed and accurately implemented to solve the differential eigenvalue problems arising from linear and nonlinear analyses to determine critical Rayleigh numbers. Via numerical simulations, the stabilizing effect of the upper bounding plane temperature, of the Darcy number and of the interaction coefficient for the heat exchange, is demonstrated.</p>\",\"PeriodicalId\":20716,\"journal\":{\"name\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"202 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2023.0820\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0820","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究达西-布林克曼(Darcy-Brinkman)多孔介质在局部热非均衡假设下发生的穿透性对流。对于所涉及的问题,已经证明了稳定性交换原理的强形式,即对流运动只能通过次级静止运动发生。我们对基本状态进行了线性和非线性稳定性分析,特别关注了稳定性临界值与问题相关物理参数的关系。我们采用并精确实施了切比雪夫-τ 法和射击法,以解决线性和非线性分析中产生的微分特征值问题,从而确定临界瑞利数。通过数值模拟,证明了上界平面温度、达西数和热交换交互系数的稳定作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of penetrative convective currents in local thermal non-equilibrium

The aim of this paper is to investigate the onset of penetrative convection in a Darcy–Brinkman porous medium under the hypothesis of local thermal non-equilibrium. For the problem at stake, the strong form of the principle of exchange of stabilities has been proved, i.e. convective motions can occur only through secondary stationary motions. We perform linear and nonlinear stability analyses of the basic state, with particular regard to the behaviour of stability thresholds with respect to the relevant physical parameters characterizing the problem. The Chebyshev-τ method and the shooting method are employed and accurately implemented to solve the differential eigenvalue problems arising from linear and nonlinear analyses to determine critical Rayleigh numbers. Via numerical simulations, the stabilizing effect of the upper bounding plane temperature, of the Darcy number and of the interaction coefficient for the heat exchange, is demonstrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
227
审稿时长
3.0 months
期刊介绍: Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信