{"title":"基于张力样条的非均匀离散奇异扰动偏微分方程数值算法","authors":"Murali Mohan Kumar P., Ravi Kanth A.S.V.","doi":"10.1007/s10440-024-00645-2","DOIUrl":null,"url":null,"abstract":"<div><p>The present study investigates an algorithm numerically for finding the solution of partial differential equation with differences involved singular perturbation parameter(SPPDE) on non-uniform grid. Taylor series expansion provides a close approximation of the delay and advance terms in the convection-diffusion terms. After the approximations in shift containing terms, we applied the Crank-Nicolson application on uniform grid in the vertical direction. Subsequently, the resultant system is employed by the method of tension spline on a piece-wise uniform grid. Empirical evidence has shown that the suggested approach exhibits second-order characteristics in both the spatial and temporal dimensions. The effectiveness of derived scheme demonstrated through the solution of examples and the results are compared with existed methods. In the conclusion section, we will discuss the effect of shift parameters behavior for various singular perturbation parameter.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"190 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Tension Spline Based Numerical Algorithm for Singularly Perturbed Partial Differential Equations on Non-uniform Discretization\",\"authors\":\"Murali Mohan Kumar P., Ravi Kanth A.S.V.\",\"doi\":\"10.1007/s10440-024-00645-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study investigates an algorithm numerically for finding the solution of partial differential equation with differences involved singular perturbation parameter(SPPDE) on non-uniform grid. Taylor series expansion provides a close approximation of the delay and advance terms in the convection-diffusion terms. After the approximations in shift containing terms, we applied the Crank-Nicolson application on uniform grid in the vertical direction. Subsequently, the resultant system is employed by the method of tension spline on a piece-wise uniform grid. Empirical evidence has shown that the suggested approach exhibits second-order characteristics in both the spatial and temporal dimensions. The effectiveness of derived scheme demonstrated through the solution of examples and the results are compared with existed methods. In the conclusion section, we will discuss the effect of shift parameters behavior for various singular perturbation parameter.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"190 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00645-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00645-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Tension Spline Based Numerical Algorithm for Singularly Perturbed Partial Differential Equations on Non-uniform Discretization
The present study investigates an algorithm numerically for finding the solution of partial differential equation with differences involved singular perturbation parameter(SPPDE) on non-uniform grid. Taylor series expansion provides a close approximation of the delay and advance terms in the convection-diffusion terms. After the approximations in shift containing terms, we applied the Crank-Nicolson application on uniform grid in the vertical direction. Subsequently, the resultant system is employed by the method of tension spline on a piece-wise uniform grid. Empirical evidence has shown that the suggested approach exhibits second-order characteristics in both the spatial and temporal dimensions. The effectiveness of derived scheme demonstrated through the solution of examples and the results are compared with existed methods. In the conclusion section, we will discuss the effect of shift parameters behavior for various singular perturbation parameter.
期刊介绍:
Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods.
Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.