Bin Wang, Xuezhe Yu, Yugang Zeng, Weijie Gao, Wei Chen, Haoyu Shen, Kedi Ma, Hongxiao Li, Zizhuo Liu, Hui Su, Li Qin, Yongqiang Ning, and Lijun Wang
{"title":"具有窄光致发光线宽的 InAs 量子点可在 1.55 µm 激光器中降低阈值电流密度:勘误表","authors":"Bin Wang, Xuezhe Yu, Yugang Zeng, Weijie Gao, Wei Chen, Haoyu Shen, Kedi Ma, Hongxiao Li, Zizhuo Liu, Hui Su, Li Qin, Yongqiang Ning, and Lijun Wang","doi":"10.1364/ome.525259","DOIUrl":null,"url":null,"abstract":"We address and correct errors identified in our previously published article [Opt. Mater. Express <b>14</b>, 1074 (2024) [CrossRef] <span aria-hidden=\"true\"> </span>]. The corrections necessitate modifications to the text of the original paper, leading to its rephrasing for clarity and accuracy.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"InAs quantum dots with a narrow photoluminescence linewidth for a lower threshold current density in 1.55 µm lasers: erratum\",\"authors\":\"Bin Wang, Xuezhe Yu, Yugang Zeng, Weijie Gao, Wei Chen, Haoyu Shen, Kedi Ma, Hongxiao Li, Zizhuo Liu, Hui Su, Li Qin, Yongqiang Ning, and Lijun Wang\",\"doi\":\"10.1364/ome.525259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address and correct errors identified in our previously published article [Opt. Mater. Express <b>14</b>, 1074 (2024) [CrossRef] <span aria-hidden=\\\"true\\\"> </span>]. The corrections necessitate modifications to the text of the original paper, leading to its rephrasing for clarity and accuracy.\",\"PeriodicalId\":19548,\"journal\":{\"name\":\"Optical Materials Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1364/ome.525259\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.525259","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
InAs quantum dots with a narrow photoluminescence linewidth for a lower threshold current density in 1.55 µm lasers: erratum
We address and correct errors identified in our previously published article [Opt. Mater. Express 14, 1074 (2024) [CrossRef] ]. The corrections necessitate modifications to the text of the original paper, leading to its rephrasing for clarity and accuracy.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to:
Artificially engineered optical structures
Biomaterials
Optical detector materials
Optical storage media
Materials for integrated optics
Nonlinear optical materials
Laser materials
Metamaterials
Nanomaterials
Organics and polymers
Soft materials
IR materials
Materials for fiber optics
Hybrid technologies
Materials for quantum photonics
Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.