精确控制的超快电子显微镜平台。案例研究:以 50 fs-10 fm 的尺度探测 1T-TaSe2 中的多阶相干声子动力学

Xiaoyi Sun, Joseph Williams, Sachin Sharma, Shriraj Kunjir, Dan Morris, Shen Zhao, Chong-Yu Ruan
{"title":"精确控制的超快电子显微镜平台。案例研究:以 50 fs-10 fm 的尺度探测 1T-TaSe2 中的多阶相干声子动力学","authors":"Xiaoyi Sun, Joseph Williams, Sachin Sharma, Shriraj Kunjir, Dan Morris, Shen Zhao, Chong-Yu Ruan","doi":"10.1063/4.0000242","DOIUrl":null,"url":null,"abstract":"We report on the first detailed beam tests attesting the fundamental principle behind the development of high-current-efficiency ultrafast electron microscope systems where a radio frequency (RF) cavity is incorporated as a condenser lens in the beam delivery system. To allow for the experiment to be carried out with a sufficient resolution to probe the performance at the emittance floor, a new cascade loop RF controller system is developed to reduce the RF noise floor. Temporal resolution at 50 fs in full-width-at-half-maximum and detection sensitivity better than 1% are demonstrated on exfoliated 1T-TaSe2 system under a moderate repetition rate. To benchmark the performance, multi-terahertz edge-mode coherent phonon excitation is employed as the standard candle. The high temporal resolution and the significant visibility to very low dynamical contrast in diffraction signals via high-precision phase-space manipulation give strong support to the working principle for the new high-brightness femtosecond electron microscope systems.","PeriodicalId":21992,"journal":{"name":"Structural Dynamics","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision-controlled ultrafast electron microscope platforms. A case study: Multiple-order coherent phonon dynamics in 1T-TaSe2 probed at 50 fs–10 fm scales\",\"authors\":\"Xiaoyi Sun, Joseph Williams, Sachin Sharma, Shriraj Kunjir, Dan Morris, Shen Zhao, Chong-Yu Ruan\",\"doi\":\"10.1063/4.0000242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on the first detailed beam tests attesting the fundamental principle behind the development of high-current-efficiency ultrafast electron microscope systems where a radio frequency (RF) cavity is incorporated as a condenser lens in the beam delivery system. To allow for the experiment to be carried out with a sufficient resolution to probe the performance at the emittance floor, a new cascade loop RF controller system is developed to reduce the RF noise floor. Temporal resolution at 50 fs in full-width-at-half-maximum and detection sensitivity better than 1% are demonstrated on exfoliated 1T-TaSe2 system under a moderate repetition rate. To benchmark the performance, multi-terahertz edge-mode coherent phonon excitation is employed as the standard candle. The high temporal resolution and the significant visibility to very low dynamical contrast in diffraction signals via high-precision phase-space manipulation give strong support to the working principle for the new high-brightness femtosecond electron microscope systems.\",\"PeriodicalId\":21992,\"journal\":{\"name\":\"Structural Dynamics\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/4.0000242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了首次详细的光束测试,证明了开发高电流效率超快电子显微镜系统的基本原理,即在光束传输系统中加入射频(RF)腔作为聚光透镜。为了使实验具有足够的分辨率来探测发射底限的性能,我们开发了一种新型级联环路射频控制器系统,以降低射频噪声底限。在中等重复率下,在剥离的 1T-TaSe2 系统上演示了 50 fs 的最大全宽时间分辨率和优于 1%的探测灵敏度。为了确定性能基准,采用了多太赫兹边缘模式相干声子激发作为标准烛光。高时间分辨率以及通过高精度相空间操作对衍射信号中极低动态对比度的显著可见性,为新型高亮度飞秒电子显微镜系统的工作原理提供了有力支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precision-controlled ultrafast electron microscope platforms. A case study: Multiple-order coherent phonon dynamics in 1T-TaSe2 probed at 50 fs–10 fm scales
We report on the first detailed beam tests attesting the fundamental principle behind the development of high-current-efficiency ultrafast electron microscope systems where a radio frequency (RF) cavity is incorporated as a condenser lens in the beam delivery system. To allow for the experiment to be carried out with a sufficient resolution to probe the performance at the emittance floor, a new cascade loop RF controller system is developed to reduce the RF noise floor. Temporal resolution at 50 fs in full-width-at-half-maximum and detection sensitivity better than 1% are demonstrated on exfoliated 1T-TaSe2 system under a moderate repetition rate. To benchmark the performance, multi-terahertz edge-mode coherent phonon excitation is employed as the standard candle. The high temporal resolution and the significant visibility to very low dynamical contrast in diffraction signals via high-precision phase-space manipulation give strong support to the working principle for the new high-brightness femtosecond electron microscope systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信